login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A276818
Composite numbers n such that b^gpf(n) == b (mod n) for every integer b, where gpf(n) = A006530(n).
2
6, 10, 14, 15, 21, 22, 26, 30, 33, 34, 38, 39, 42, 46, 51, 57, 58, 62, 65, 66, 69, 74, 78, 82, 85, 86, 87, 91, 93, 94, 102, 106, 111, 114, 118, 122, 123, 129, 130, 133, 134, 138, 141, 142, 145, 146, 158, 159, 166, 170, 174, 177, 178, 182, 183, 185, 186, 194
OFFSET
1,1
COMMENTS
It suffices to check all bases 2 <= b <= (n+1)/2.
Squarefree composite numbers n such that for every prime p dividing n, p-1 divides gpf(n)-1. - Robert Israel, Sep 18 2016
An even number 2m is in the sequence iff m is an odd prime or odd m is in the sequence. - Altug Alkan and Thomas Ordowski, Sep 19 2016
Problem: are there infinitely many Carmichael numbers A002997 in the sequence? These are Carmichael numbers m such that m/gpf(m) is a Carmichael number, they are a proper subset of A214758. - Thomas Ordowski and Altug Alkan, Sep 19 2016
Squarefree composite numbers n such that A002322(n) = gpf(n)-1. - Thomas Ordowski, Feb 25 2018
LINKS
MAPLE
filter:= proc(n) local F, p;
if isprime(n) or not numtheory:-issqrfree(n) then return false fi;
F:= numtheory:-factorset(n);
p:= max(F);
evalb(map(t -> (p-1) mod (t-1), F) = {0})
end proc:
select(filter, [$2..1000]); # Robert Israel, Sep 18 2016
MATHEMATICA
Select[DeleteCases[Range@ 200, k_ /; ! CompositeQ@ k], Function[n, Times @@ Boole@ Map[Mod[#, n] == Mod[#^(FactorInteger[n][[-1, 1]]), n] &, Range[2, Floor[(n + 1)/2]]] == 1]] (* Michael De Vlieger, Sep 19 2016 *)
PROG
(PARI) is(n)=if(n%2==0, if(n%4, if(isprime(n/2), return(1), n>>=1), return(0))); my(f=factor(n)); if(#f~ < 2 || vecmax(f[, 2])>1, return(0)); for(i=1, #f~, if((f[#f~, 1]-1)%(f[i, 1]-1), return(0))); 1 \\ Charles R Greathouse IV, Sep 19 2016
(PARI) lista(nn) = forcomposite(n=1, nn, if ( issquarefree(n) && !((vecmax(factor(n)[, 1]) - 1) % lcm(znstar(n)[2])), print1(n, ", "))); \\ Michel Marcus, Sep 11 2017
CROSSREFS
KEYWORD
nonn
AUTHOR
Thomas Ordowski, Sep 18 2016
EXTENSIONS
More terms from Michel Marcus and Robert Israel, Sep 18 2016
STATUS
approved