login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A178667
Irregular triangle: T(n,k) is the coefficient [x^k] of the series (-1)^n *(x-1)^(n+2) *sum_{j=0..infinity} x^j /Beta(n+1,2*j+1), k=0..1+n/2, where Beta() is the usual Gamma-function ratio.
1
1, 1, 2, 6, 3, 18, 3, 4, 40, 20, 5, 75, 75, 5, 6, 126, 210, 42, 7, 196, 490, 196, 7, 8, 288, 1008, 672, 72, 9, 405, 1890, 1890, 405, 9, 10, 550, 3300, 4620, 1650, 110, 11, 726, 5445, 10164, 5445, 726, 11
OFFSET
0,3
COMMENTS
The even-indexed rows (at least if limited to k<=1+n/2) are left-right symmetric.
EXAMPLE
1, 1;
2, 6;
3, 18, 3;
4, 40, 20;
5, 75, 75, 5;
6, 126, 210, 42;
7, 196, 490, 196, 7;
8, 288, 1008, 672, 72;
9, 405, 1890, 1890, 405, 9;
10, 550, 3300, 4620, 1650, 110;
11, 726, 5445, 10164, 5445, 726, 11;
MAPLE
A178667 := proc(n, k)
(-1)^n*(x-1)^(n+2)*add(x^j/Beta(n+1, 2*j+1), j=0..n+1) ;
coeftayl(%, x=0, k) ;
end proc: # R. J. Mathar, Feb 12 2013
MATHEMATICA
p[x_, n_] = (-1)^n*(-1 + x)^(n + 2)*Sum[(1/Beta[n + 1, 2*k + 1])x^k, {k, 0, Infinity}];
Flatten[Table[CoefficientList[FullSimplify[ExpandAll[p[x, n]]], x], {n, 0, 10}]]
CROSSREFS
Cf. A036289 (Row sums).
Sequence in context: A083169 A276817 A050125 * A281881 A377876 A206493
KEYWORD
nonn,tabf
AUTHOR
Roger L. Bagula, Jun 02 2010
STATUS
approved