login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A268413
a(n) = Sum_{k = 0..n} (-1)^k*14^k.
1
1, -13, 183, -2561, 35855, -501969, 7027567, -98385937, 1377403119, -19283643665, 269971011311, -3779594158353, 52914318216943, -740800455037201, 10371206370520815, -145196889187291409, 2032756448622079727, -28458590280709116177, 398420263929927626479
OFFSET
0,2
COMMENTS
Alternating sum of powers of 14.
More generally, the ordinary generating function for the Sum_{k = 0..n} (-1)^k*m^k is 1/(1 + (m - 1)*x - m*x^2). Also, Sum_{k = 0..n} (-1)^k*m^k = ((-1)^n*m^(n + 1) + 1)/(m + 1).
FORMULA
G.f.: 1/(1 + 13*x - 14*x^2).
a(n) = ((-1)^n*14^(n + 1) + 1)/15.
a(n) = 1 - 14*a(n - 1) for n>0 and a(0)=1.
a(n) = Sum_{k = 0..n} A033999(k)*A001023(k).
Lim_{n -> infinity} a(n)/a(n + 1) = - 1/14.
MATHEMATICA
Table[((-1)^n 14^(n + 1) + 1)/15, {n, 0, 18}]
LinearRecurrence[{-13, 14}, {1, -13}, 19]
Table[Sum[(-1)^k*14^k, {k, 0, n}], {n, 0, 18}]
PROG
(PARI) x='x+O('x^30); Vec(1/(1 + 13*x - 14*x^2)) \\ G. C. Greubel, May 26 2018
(Magma) I:=[1, -19]; [n le 2 select I[n] else -13*Self(n-1) +14*Self(n-2): n in [1..30]]; // G. C. Greubel, May 26 2018
CROSSREFS
Cf. similar sequences of the type Sum_{k=0..n} (-1)^k*m^k: A059841 (m=1), A077925 (m=2), A014983 (m=3), A014985 (m=4), A014986 (m=5), A014987 (m=6), A014989 (m=7), A014990 (m=8), A014991 (m=9), A014992 (m=10), A014993 (m=11), A014994 (m=12), A015000 (m=13), this sequence (m=14), A239284 (m=15).
Sequence in context: A158548 A285399 A297581 * A274345 A227503 A091540
KEYWORD
sign,easy
AUTHOR
Ilya Gutkovskiy, Feb 04 2016
STATUS
approved