OFFSET
2,2
COMMENTS
LINKS
G. C. Greubel, Table of n, a(n) for n = 2..380
FORMULA
E.g.f.: (1-2*x-(1-3*x)^(2/3))/(2*(1-3*x))= (1/2-x+int((1-3*x)^(-1/3), x))/(1-3*x).
E.g.f. with offset 0: (3-2*(1-3*x)^(2/3))/(1-3*x)^3.
a(n)=(fac3(3*n) - 3*fac3(3*n-2))/3! with fac3(3*n) := A032031(n)= n!*3^n and fac3(3*n-2) := A007559(n).
a(n) ~ 3^(n-1) * n! / 2. - Vaclav Kotesovec, Aug 16 2018
MATHEMATICA
Drop[With[{nmax = 50}, CoefficientList[Series[(1 - 2*x - (1 - 3*x)^(2/3))/(2*(1 - 3*x)), {x, 0, nmax}], x]*Range[0, nmax]!], 2] (* G. C. Greubel, Aug 15 2018 *)
PROG
(PARI) x='x+O('x^30); Vec(serlaplace((1 - 2*x - (1 - 3*x)^(2/3))/(2*(1 - 3*x)))) \\ G. C. Greubel, Aug 15 2018
(Magma) m:=30; R<x>:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!( (3-2*(1-3*x)^(2/3))/(1-3*x)^3 )); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, Aug 15 2018
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang, Feb 13 2004
STATUS
approved