OFFSET
0,3
COMMENTS
m-primes (also called m-almost primes) are the numbers which have precisely m prime factors counting multiple factors. 1 is included as 0-prime.
The number N>=1 appears in column nr. m = A001222(N).
LINKS
W. Lang, First 11 rows.
FORMULA
For n>=m>=1: a(n, m)= (n-m+1)-th member in the strictly monotonically increasing sequence of numbers N satisfying: N=product(p(k)^(e_k), k=1..) with p(k) := A000040(k) (k-th prime) such that sum(e_k, k=1..) = m, where the e_k are nonnegative. if m=0 : a(n, 0)=1 if n=0 else 0. If n<m then a(n, m)=0.
EXAMPLE
From Michael De Vlieger, May 24 2017: (Start)
Chart a(n,m) read by antidiagonals:
n | m ->
------------------------------------------------
0 | 1 0 0 0 0 0 0 ... (A000007)
1 | 2 3 5 7 11 13 17 (A000040)
2 | 4 6 9 10 14 15 21 (A001358)
3 | 8 12 18 20 27 28 30 (A014612)
4 | 16 24 36 40 54 56 60 (A014613)
5 | 32 48 72 80 108 112 120 (A014614)
6 | 64 96 144 160 216 224 240 (A046306)
7 | 128 192 288 320 432 448 480 (A046308)
8 | 256 384 576 640 864 896 960 (A046310)
...
Triangle begins:
0 | 1
1 | 0 2
2 | 0 3 4
3 | 0 5 6 8
4 | 0 7 9 12 16
5 | 0 11 10 18 24 32
6 | 0 13 14 20 36 48 64
7 | 0 17 15 27 40 72 96 128
8 | 0 19 21 28 54 80 144 192 256
...
(End)
MATHEMATICA
With[{nn = 11}, Function[s, Function[t, Table[Function[m, If[m == 1, Boole[k == 1], t[[m, k]]]][n - k + 1], {n, nn}, {k, n, 1, -1}]]@ Map[Position[s, #][[All, 1]] &, Range[0, nn]]]@ PrimeOmega@ Range[2^nn]] (* or *)
a = {1}; Do[Block[{r = {Prime@ n}}, Do[AppendTo[r, SelectFirst[ Range[a[[-(n - i)]] + 1, 2^n], PrimeOmega@ # == i &]], {i, 2, n - 1}]; a = Join[a, {0}, If[n == 1, {}, r], {2^n}]], {n, 11}]; a (* Michael De Vlieger, May 24 2017 *)
CROSSREFS
KEYWORD
AUTHOR
Wolfdieter Lang, Feb 13 2004
STATUS
approved