login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A307320 a(n) is the base-2 logarithm of the denominator of sigma_{-1}(P(n)), where P(n) = 2^(n-1)*M(n), where M(n) = 2^n - 1 is the n-th Mersenne number. 0
0, 0, 0, 0, 0, 2, 0, 3, 4, 0, 6, 6, 0, 2, 3, 10, 0, 8, 0, 9, 12, 13, 17, 16, 17, 8, 21, 13, 22, 14, 0, 25, 22, 12, 18, 22, 30, 14, 17, 27, 36, 29, 32, 32, 25, 36, 40, 37, 40, 34, 18, 30, 47, 44, 40, 39, 29, 46, 53, 40, 0, 26, 51, 55, 41, 50, 62, 42, 57, 44, 61 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,6
COMMENTS
a(n) = 0 if and only if P(n) is multiperfect. In particular, a(n) = 0 if M(n) is prime.
LINKS
EXAMPLE
a(6) = 2 since P(6) = 2016 and sigma_{-1}(2016) = 13/2^2.
MATHEMATICA
M[n_] := 2^n - 1;
P[n_] := 2^(n - 1) M[n];
A[n_] := Log[2, Denominator[DivisorSigma[-1, P[n]]]];
PROG
(PARI) a(n) = logint(denominator(sigma(2^(n-1)*(2^n-1), -1)), 2); \\ Michel Marcus, Apr 02 2019
CROSSREFS
Sequence in context: A091538 A340991 A013584 * A350227 A137372 A212844
KEYWORD
nonn
AUTHOR
David Terr, Apr 02 2019
EXTENSIONS
More terms from Felix Fröhlich, Sep 29 2019
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 12 14:45 EDT 2024. Contains 375851 sequences. (Running on oeis4.)