OFFSET
1,5
COMMENTS
Analogous to A306737.
The first 52 terms of a(n) and A306737 are identical, since the first 19 terms of A002182 and A004394 are the same, and the first two terms of row 20 are the same. a(20) = 4,2,1,1,1, while A306737(20) = 4,2,2.
Row 1 = {0} by convention.
Row n in reverse order is the conjugate of the list of the multiplicities of the prime divisors of A004394(n).
LINKS
Michael De Vlieger, Table of n, a(n) for n = 1..10664 (rows 1 <= n <= 1200, flattened).
Michael De Vlieger, Relation between A307322 and A306737.
EXAMPLE
Terms in the first rows n of this sequence, followed by the corresponding primorials whose product = A004394(n):
-----------------------------------------------
1: 0; 1 = 1
2: 1; 2 = 2
3: 1, 1; 2 * 2 = 4
4: 2; 6 = 6
5: 1, 2; 2 * 6 = 12
6: 1, 1, 2; 2 * 2 * 6 = 24
7: 2, 2; 6 * 6 = 36
8: 1, 1, 1, 2; 2 * 2 * 2 * 6 = 48
9: 1, 3; 2 * 30 = 60
10: 1, 1, 3; 2 * 2 * 30 = 120
11: 2, 3; 6 * 30 = 180
12: 1, 1, 1, 3; 2 * 2 * 2 * 30 = 240
13: 1, 2, 3; 2 * 6 * 30 = 360
14: 1, 1, 2, 3; 2 * 2 * 6 * 30 = 720
15: 1, 1, 4; 2 * 2 * 210 = 840
...
MATHEMATICA
Block[{s = Array[DivisorSigma[1, #]/# &, 10^6]}, Map[Table[LengthWhile[#, # >= i &], {i, Max@ #}] &@ If[# == 1, {0}, Function[f, ReplacePart[Table[0, {PrimePi[f[[-1, 1]]]}], #] &@ Map[PrimePi@ First@ # -> Last@ # &, f]]@ FactorInteger@ #] &@ FirstPosition[s, #][[1]] &, Union@ FoldList[Max, s]] /. {} -> {0}] // Flatten
CROSSREFS
KEYWORD
nonn,tabf
AUTHOR
Michael De Vlieger, Apr 02 2019
STATUS
approved