|
|
A307325
|
|
a(n) is the smallest number k for which prime(k+1) - prime(k) is greater than n.
|
|
0
|
|
|
2, 4, 4, 9, 9, 24, 24, 30, 30, 30, 30, 30, 30, 99, 99, 99, 99, 154, 154, 189, 189, 217, 217, 217, 217, 217, 217, 217, 217, 217, 217, 217, 217, 1183, 1183, 1831, 1831, 1831, 1831, 1831, 1831, 1831, 1831, 2225, 2225, 2225, 2225, 2225, 2225, 2225, 2225, 3385, 3385, 3385, 3385
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
For any n there is an infinity of numbers m for which prime(m+1) - prime(m) is greater than n.
|
|
REFERENCES
|
Laurențiu Panaitopol, Dinu Șerbănescu, Number theory and combinatorial problems for juniors, Ed.Gil, Zalău, (2003), ch. 1, p.7, pr. 25. (in Romanian).
|
|
LINKS
|
|
|
FORMULA
|
|
|
EXAMPLE
|
For n = 2, prime(2) - prime(1) = 3 - 2 = 1, prime(3) - prime(2) = 5 - 3 = 2, prime(5) - prime(4) = 11 - 7 = 4, so a(2) = 4.
|
|
PROG
|
(MATLAB) v=primes(1000000);
for u=1:100; ss=1;
while and(v(ss+1)-v(ss)<=u, ss<length(v)-1); ss=ss+1; end;
sol(u)=ss;
end
sol
(Magma) v:=PrimesUpTo(10000000);
sol:=[];
for u in [1..60] do
for ss in [1..#v-1] do
if v[ss+1]-v[ss] gt u then
sol[u]:=ss;
break;
end if;
end for;
end for;
sol;
(PARI) a(n) = my(k=1); while(prime(k+1) - prime(k) <= n, k++); k; \\ Michel Marcus, Apr 03 2019
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|