login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A307325 a(n) is the smallest number k for which prime(k+1) - prime(k) is greater than n. 0
2, 4, 4, 9, 9, 24, 24, 30, 30, 30, 30, 30, 30, 99, 99, 99, 99, 154, 154, 189, 189, 217, 217, 217, 217, 217, 217, 217, 217, 217, 217, 217, 217, 1183, 1183, 1831, 1831, 1831, 1831, 1831, 1831, 1831, 1831, 2225, 2225, 2225, 2225, 2225, 2225, 2225, 2225, 3385, 3385, 3385, 3385 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,1
COMMENTS
For any n there is an infinity of numbers m for which prime(m+1) - prime(m) is greater than n.
It appears that the sequence of lengths of successive runs is equal to A053695. - Marc Bofill Janer, May 21 2019
REFERENCES
Laurențiu Panaitopol, Dinu Șerbănescu, Number theory and combinatorial problems for juniors, Ed.Gil, Zalău, (2003), ch. 1, p.7, pr. 25. (in Romanian).
LINKS
FORMULA
a(2*n) = a(2*n+1) = A144309(n+1) for n>=1. - Georg Fischer, Dec 05 2022
EXAMPLE
For n = 2, prime(2) - prime(1) = 3 - 2 = 1, prime(3) - prime(2) = 5 - 3 = 2, prime(5) - prime(4) = 11 - 7 = 4, so a(2) = 4.
PROG
(MATLAB) v=primes(1000000);
for u=1:100; ss=1;
while and(v(ss+1)-v(ss)<=u, ss<length(v)-1); ss=ss+1; end;
sol(u)=ss;
end
sol
(Magma) v:=PrimesUpTo(10000000);
sol:=[];
for u in [1..60] do
for ss in [1..#v-1] do
if v[ss+1]-v[ss] gt u then
sol[u]:=ss;
break;
end if;
end for;
end for;
sol;
(PARI) a(n) = my(k=1); while(prime(k+1) - prime(k) <= n, k++); k; \\ Michel Marcus, Apr 03 2019
CROSSREFS
Sequence in context: A340714 A292381 A233655 * A272196 A335057 A039887
KEYWORD
nonn
AUTHOR
Marius A. Burtea, Apr 02 2019
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 17 17:26 EDT 2024. Contains 375990 sequences. (Running on oeis4.)