OFFSET
0,1
COMMENTS
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..10000
Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
FORMULA
G.f: 13*(1 + 11*x + 14*x^2)/(1-x)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
From Amiram Eldar, Mar 06 2023: (Start)
Sum_{n>=0} 1/a(n) = (coth(Pi/sqrt(13))*Pi/sqrt(13) + 1)/26.
Sum_{n>=0} (-1)^n/a(n) = (cosech(Pi/sqrt(13))*Pi/sqrt(13) + 1)/26. (End)
E.g.f.: 13*exp(x)*(1 + 13*x + 13*x^2). - Elmo R. Oliveira, Jan 15 2025
MATHEMATICA
LinearRecurrence[{3, -3, 1}, {13, 182, 689}, 50] (* Vincenzo Librandi, Feb 14 2012 *)
PROG
(Magma) I:=[13, 182, 689]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+1*Self(n-3): n in [1..40]]; // Vincenzo Librandi, Feb 14 2012
(PARI) for(n=1, 40, print1(169*n^2 + 13", ")); \\ Vincenzo Librandi, Feb 14 2012
CROSSREFS
KEYWORD
nonn,easy,changed
AUTHOR
Vincenzo Librandi, Mar 21 2009
EXTENSIONS
Comment rewritten, a(0) added by R. J. Mathar, Oct 16 2009
STATUS
approved