|
|
A158548
|
|
a(n) = 169*n^2 + 13.
|
|
2
|
|
|
13, 182, 689, 1534, 2717, 4238, 6097, 8294, 10829, 13702, 16913, 20462, 24349, 28574, 33137, 38038, 43277, 48854, 54769, 61022, 67613, 74542, 81809, 89414, 97357, 105638, 114257, 123214, 132509, 142142, 152113, 162422, 173069, 184054, 195377, 207038, 219037
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,1
|
|
COMMENTS
|
The identity (26*n^2 + 1)^2 - (169*n^2 + 13)*(2*n)^2 = 1 can be written as A158549(n)^2 - a(n)*A005843(n)^2 = 1.
|
|
LINKS
|
|
|
FORMULA
|
G.f: 13*(1 + 11*x + 14*x^2)/(1-x)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
Sum_{n>=0} 1/a(n) = (coth(Pi/sqrt(13))*Pi/sqrt(13) + 1)/26.
Sum_{n>=0} (-1)^n/a(n) = (cosech(Pi/sqrt(13))*Pi/sqrt(13) + 1)/26. (End)
|
|
MATHEMATICA
|
LinearRecurrence[{3, -3, 1}, {13, 182, 689}, 50] (* Vincenzo Librandi, Feb 14 2012 *)
|
|
PROG
|
(Magma) I:=[13, 182, 689]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+1*Self(n-3): n in [1..40]]; // Vincenzo Librandi, Feb 14 2012
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|