login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A158548
a(n) = 169*n^2 + 13.
2
13, 182, 689, 1534, 2717, 4238, 6097, 8294, 10829, 13702, 16913, 20462, 24349, 28574, 33137, 38038, 43277, 48854, 54769, 61022, 67613, 74542, 81809, 89414, 97357, 105638, 114257, 123214, 132509, 142142, 152113, 162422, 173069, 184054, 195377, 207038, 219037, 231374
OFFSET
0,1
COMMENTS
The identity (26*n^2 + 1)^2 - (169*n^2 + 13)*(2*n)^2 = 1 can be written as A158549(n)^2 - a(n)*A005843(n)^2 = 1.
FORMULA
G.f: 13*(1 + 11*x + 14*x^2)/(1-x)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
From Amiram Eldar, Mar 06 2023: (Start)
Sum_{n>=0} 1/a(n) = (coth(Pi/sqrt(13))*Pi/sqrt(13) + 1)/26.
Sum_{n>=0} (-1)^n/a(n) = (cosech(Pi/sqrt(13))*Pi/sqrt(13) + 1)/26. (End)
E.g.f.: 13*exp(x)*(1 + 13*x + 13*x^2). - Elmo R. Oliveira, Jan 15 2025
MATHEMATICA
LinearRecurrence[{3, -3, 1}, {13, 182, 689}, 50] (* Vincenzo Librandi, Feb 14 2012 *)
PROG
(Magma) I:=[13, 182, 689]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+1*Self(n-3): n in [1..40]]; // Vincenzo Librandi, Feb 14 2012
(PARI) for(n=1, 40, print1(169*n^2 + 13", ")); \\ Vincenzo Librandi, Feb 14 2012
CROSSREFS
Sequence in context: A067385 A097260 A178303 * A285399 A297581 A268413
KEYWORD
nonn,easy,changed
AUTHOR
Vincenzo Librandi, Mar 21 2009
EXTENSIONS
Comment rewritten, a(0) added by R. J. Mathar, Oct 16 2009
STATUS
approved