|
|
A158550
|
|
a(n) = 169*n^2 - 13.
|
|
2
|
|
|
156, 663, 1508, 2691, 4212, 6071, 8268, 10803, 13676, 16887, 20436, 24323, 28548, 33111, 38012, 43251, 48828, 54743, 60996, 67587, 74516, 81783, 89388, 97331, 105612, 114231, 123188, 132483, 142116, 152087, 162396, 173043, 184028, 195351
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
The identity (26*n^2 - 1)^2 - (169*n^2 - 13)*(2*n)^2 = 1 can be written as A158551(n)^2 - a(n)*A005843(n)^2 = 1.
|
|
LINKS
|
Vincenzo Librandi, Table of n, a(n) for n = 1..10000
Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
|
|
FORMULA
|
G.f.: 13*x*(-12 - 15*x + x^2)/(x-1)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
|
|
MATHEMATICA
|
LinearRecurrence[{3, -3, 1}, {156, 663, 1508}, 40] (* Vincenzo Librandi, Feb 14 2012 *)
169*Range[40]^2-13 (* Harvey P. Dale, Apr 12 2017 *)
|
|
PROG
|
(MAGMA) I:=[156, 663, 1508]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+Self(n-3): n in [1..50]]; // Vincenzo Librandi, Feb 14 2012
(PARI) for(n=1, 40, print1(169*n^2 - 13", ")); \\ Vincenzo Librandi, Feb 14 2012
|
|
CROSSREFS
|
Cf. A005843, A158551.
Sequence in context: A259947 A043356 A038476 * A156994 A304619 A204718
Adjacent sequences: A158547 A158548 A158549 * A158551 A158552 A158553
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
Vincenzo Librandi, Mar 21 2009
|
|
EXTENSIONS
|
Comment rewritten by R. J. Mathar, Oct 16 2009
|
|
STATUS
|
approved
|
|
|
|