login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A264773
Triangle T(n,k) = binomial(4*n - 3*k, 3*n - 2*k), 0 <= k <= n.
3
1, 4, 1, 28, 5, 1, 220, 36, 6, 1, 1820, 286, 45, 7, 1, 15504, 2380, 364, 55, 8, 1, 134596, 20349, 3060, 455, 66, 9, 1, 1184040, 177100, 26334, 3876, 560, 78, 10, 1, 10518300, 1560780, 230230, 33649, 4845, 680, 91, 11, 1, 94143280, 13884156, 2035800, 296010, 42504, 5985, 816, 105, 12, 1
OFFSET
0,2
COMMENTS
Riordan array (f(x),x*g(x)), where g(x) = 1 + x + 4*x^2 + 22*x^3 + 140*x^4 + ... is the o.g.f. for A002293 and f(x) = g(x)/(4 - 3*g(x)) = 1 + 4*x + 28*x^2 + 220*x^3 + 1820*x^4 + ... is the o.g.f. for A005810.
More generally, if (R(n,k))n,k>=0 is a proper Riordan array and m is a nonnegative integer and a > b are integers then the array with (n,k)-th element R((m + 1)*n - a*k, m*n - b*k) is also a Riordan array (not necessarily proper). Here we take R as Pascal's triangle and m = a = 3 and b = 2. See A092392, A264772, A264774 and A113139 for further examples.
LINKS
Paolo Xausa, Table of n, a(n) for n = 0..11475 (rows 0..150 of the triangle, flattened).
E. Lebensztayn, On the asymptotic enumeration of accessible automata, Discrete Mathematics and Theoretical Computer Science, Vol. 12, No. 3, 2010, 75-80, Section 2.
R. Sprugnoli, An Introduction to Mathematical Methods in Combinatorics CreateSpace Independent Publishing Platform 2006, Section 5.6, ISBN-13: 978-1502925244.
FORMULA
T(n,k) = binomial(4*n - 3*k, n - k).
O.g.f.: f(x)/(1 - t*x*g(x)), where f(x) = Sum_{n >= 0} binomial(4*n,n)*x^n and g(x) = Sum_{n >= 0} 1/(3*n + 1)*binomial(4*n,n)*x^n.
EXAMPLE
Triangle begins
n\k | 0 1 2 3 4 5 6 7
------+-----------------------------------------------
0 | 1
1 | 4 1
2 | 28 5 1
3 | 220 36 6 1
4 | 1820 286 45 7 1
5 | 15504 2380 364 55 8 1
6 | 134596 20349 3060 455 66 9 1
7 | 1184040 177100 26334 3876 560 78 10 1
...
MAPLE
A264773:= proc(n, k) binomial(4*n - 3*k, 3*n - 2*k); end proc:
seq(seq(A264773(n, k), k = 0..n), n = 0..10);
MATHEMATICA
A264773[n_, k_] := Binomial[4*n - 3*k, n - k];
Table[A264773[n, k], {n, 0, 10}, {k, 0, n}] (* Paolo Xausa, Feb 06 2024 *)
PROG
(Magma) /* As triangle: */ [[Binomial(4*n-3*k, 3*n-2*k): k in [0..n]]: n in [0.. 10]]; // Vincenzo Librandi, Dec 02 2015
CROSSREFS
A005810 (column 0), A052203 (column 1), A257633 (column 2), A224274 (column 3), A004331 (column 4). Cf. A002293, A007318, A092392 (C(2n-k,n)), A119301 (C(3n-k,n-k)), A264772, A264774.
Sequence in context: A336913 A134150 A134151 * A119304 A114150 A134149
KEYWORD
nonn,tabl,easy
AUTHOR
Peter Bala, Nov 30 2015
STATUS
approved