login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A134150
A certain partition array in Abramowitz-Stegun order (A-St order), called M_3(4)/M_3.
4
1, 4, 1, 28, 4, 1, 280, 28, 16, 4, 1, 3640, 280, 112, 28, 16, 4, 1, 58240, 3640, 1120, 784, 280, 112, 64, 28, 16, 4, 1, 1106560, 58240, 14560, 7840, 3640, 1120, 784, 448, 280, 112, 64, 28, 16, 4, 1, 24344320, 1106560, 232960, 101920, 78400, 58240, 14560, 7840
OFFSET
1,2
COMMENTS
The sequence of row lengths is A000041 (partition numbers) [1, 2, 3, 5, 7, 11, 15, 22, 30, 42, ...].
For the A-St order of partitions see the Abramowitz-Stegun reference given in A117506.
Partition number array M_3(4) = A134149 with each entry divided by the corresponding one of the partition number array M_3 = M_3(1) = A036040; in short, M_3(4)/M_3.
LINKS
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
Wolfdieter Lang, First 10 rows and more.
FORMULA
a(n,k) = Product_{j=1..n} S2(4,j,1)^e(n,k,j) with S2(4,n,1) = A035469(n,1) = A007559(n) = (3*n-2)!!! and with the exponent e(n,k,j) of j in the k-th partition of n in the A-St ordering of the partitions of n.
a(n,k) = A134149(n,k)/A036040(n,k) (division of partition arrays M_3(4) by M_3).
EXAMPLE
Triangle begins:
[1];
[4,1];
[28,4,1];
[280,28,16,4,1];
[3640,280,112,28,16,4,1];
...
a(4,3)=16 from the third (k=3) partition (2^2) of 4: (4)^2 = 16, because S2(4,2,1) = 4!! = 4*1 = 4.
CROSSREFS
Cf. A134145 (M_3(3)/M_3 array).
Cf. A134152 (row sums, also of triangle A134151).
Sequence in context: A061692 A096206 A336913 * A134151 A264773 A119304
KEYWORD
nonn,easy,tabf
AUTHOR
Wolfdieter Lang, Nov 13 2007
STATUS
approved