login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A262612
Triangle read by rows T(n,k) in which column k lists the partial sums of the k-th column of triangle A236104.
8
1, 5, 14, 1, 30, 2, 55, 6, 91, 10, 1, 140, 19, 2, 204, 28, 3, 285, 44, 7, 385, 60, 11, 1, 506, 85, 15, 2, 650, 110, 24, 3, 819, 146, 33, 4, 1015, 182, 42, 8, 1240, 231, 58, 12, 1, 1496, 280, 74, 16, 2, 1785, 344, 90, 20, 3, 2109, 408, 115, 29, 4, 2470, 489, 140, 38, 5, 2870, 570, 165, 47, 9, 3311, 670, 201, 56, 13, 1
OFFSET
1,2
COMMENTS
Alternating sum of row n equals A175254(n), i.e., Sum_{k=1..A003056(n)} (-1)^(k-1)*T(n,k) = A175254(n), which is also the volume (or the total number of units cubes) in the first n levels of the stepped pyramid described in A245092.
Row n has length A003056(n) hence the first element of column k is in row A000217(k).
EXAMPLE
Triangle begins:
1;
5;
14, 1;
30, 2;
55, 6;
91, 10, 1;
140, 19, 2;
204, 28, 3;
285, 44, 7;
385, 60, 11, 1;
506, 85, 15, 2;
650, 110, 24, 3;
819, 146, 33, 4;
1015, 182, 42, 8;
1240, 231, 58, 12, 1;
1496, 280, 74, 16, 2;
1785, 344, 90, 20, 3;
2109, 408, 115, 29, 4;
2470, 489, 140, 38, 5;
2870, 570, 165, 47, 9;
3311, 670, 201, 56, 13, 1;
3795, 770, 237, 72, 17, 2;
4324, 891, 273, 88, 21, 3;
4900, 1012, 322, 104, 25, 4;
...
For n = 6 we have that A175254(6) = [1] + [1 + 3] + [1 + 3 + 4] + [1 + 3 + 4 + 7] + [1 + 3 + 4 + 7 + 6] + [1 + 3 + 4 + 7 + 6 + 12] = 1 + 4 + 8 + 15 + 21 + 33 = 82. On the other hand the alternating sum of the 6th row of the triangle is 91 - 10 + 1 = 82, equaling A175254(6).
CROSSREFS
Column 1 gives A000330, n >= 1. Column 2 is A005993. It appears that column 3 is A092353.
Sequence in context: A127317 A049506 A069524 * A333025 A144518 A051542
KEYWORD
nonn,tabf
AUTHOR
Omar E. Pol, Nov 03 2015
STATUS
approved