login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A127317
Numbers n such that (256^n + 1)/257 is prime.
4
OFFSET
1,1
COMMENTS
All terms are primes. Largest currently known prime of the form (2^n + 1)/257 is (256^23029 + 1)/257 found by Donovan Johnson 03/2005. The only currently known prime of the form (2^n + 1)/65537 is (65536^239 + 1)/65537.
From Giuseppe Coppoletta, May 18 2017: (Start)
In general, for any j > 1, if (2^(n*2^j) + 1)/Fj is a prime (where Fj = 2^2^j + 1 is the corresponding Fermat number), then n needs to be prime, as for any odd proper factor q of n, 2^(q*2^j) + 1 is another factor of the numerator. The same for j = 0, apart for the particular value n = 3^2.
For the case j = 4, I checked it again, and (65536^p + 1)/65537 indeed is not a prime at least for 239 < p < 12500, i.e. (2^n + 1)/65537 is not a prime at least up to n = 200000. Any higher upper bound available?
One can also remark that 65536 = 2^16 and 239 = 2^8 - 2^4 - 1. Is there any special reason (see Brennen's link) for that?
I checked also that (2^(p*2^j) + 1)/Fj is never a proper power (in particular it is not a prime power) for j = 0..4 and for any prime p, at least for any exponent p*2^j < 200000.
We can even conjecture that ((Fj-1)^p + 1)/Fj is always squarefree for any odd prime p and for any Fermat number Fj with j >= 0. Note that this is not true if p is not restricted to be a prime, even if p and Fj are coprime, as shown by the following counterexample relative to the case j = 1, f1 = 5: 4^91 + 1 == 0 mod 1093^2. Remark that any such counterexample has to be a Wieferich prime (A001220), but not every Wieferich prime gives a counterexample, as shown by the second known Wieferich prime (3511), which cannot match here because it belongs to A072936.
(End)
LINKS
H. Dubner and T. Granlund, Primes of the Form (b^n+1)/(b+1), J. Integer Sequences, 3 (2000), #P00.2.7.
MATHEMATICA
Do[n=8*Prime[k]; f=2^n+1; If[PrimeQ[f/257], Print[{n, n/8}]], {k, 1, 2570}]
CROSSREFS
Cf. A000978 = numbers n such that (2^n + 1)/3 is prime. Cf. A057182 = numbers n such that (16^n + 1)/17 is a prime.
Sequence in context: A012173 A009143 A240765 * A049506 A069524 A262612
KEYWORD
bref,hard,more,nonn,changed
AUTHOR
Alexander Adamchuk, Mar 29 2007
STATUS
approved