login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A262613
Sum of divisors of n-th generalized pentagonal number.
1
1, 3, 6, 8, 28, 24, 36, 42, 48, 90, 72, 80, 144, 96, 168, 217, 182, 312, 180, 192, 372, 216, 576, 456, 280, 588, 336, 352, 864, 576, 720, 855, 558, 756, 702, 936, 1120, 600, 1080, 1116, 1024, 2016, 1008, 816, 1296, 1152, 2016, 2072, 1178, 1860, 1344, 1120, 3600
OFFSET
1,2
COMMENTS
For a remarkable connection between the sum-of-divisors function (A000203) and the generalized pentagonal numbers (A001318) see A238442.
LINKS
FORMULA
a(n) = A000203(A001318(n)).
Sum_{k=1..n} a(k) ~ (9/40) * n^3. - Amiram Eldar, Dec 14 2024
MATHEMATICA
DivisorSigma[1, Select[Accumulate[Range[200]]/3, IntegerQ]] (* G. C. Greubel, Jun 06 2017 *)
PROG
(Scheme)
(define (A262613 n) (A000203 (A001318 n))) ;; Scheme-program for A000203 given in that entry.
;; This uses memoization-macro definec:
(definec (A001318 n) (if (zero? n) 0 (+ (if (even? n) (/ n 2) n) (A001318 (- n 1)))))
;; Antti Karttunen, Dec 20 2015
(PARI) a(n) = sigma((3*n^2 + 2*n + (n%2) * (2*n + 1)) / 8); \\ Michel Marcus, Dec 21 2015
(Magma) [DivisorSigma(1, (3*n^2+2*n+(n mod 2)*(2*n+1)) div 8): n in [1..70]]; // Vincenzo Librandi, Dec 21 2015
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Omar E. Pol, Nov 24 2015
STATUS
approved