Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #35 Dec 15 2024 07:26:17
%S 1,3,6,8,28,24,36,42,48,90,72,80,144,96,168,217,182,312,180,192,372,
%T 216,576,456,280,588,336,352,864,576,720,855,558,756,702,936,1120,600,
%U 1080,1116,1024,2016,1008,816,1296,1152,2016,2072,1178,1860,1344,1120,3600
%N Sum of divisors of n-th generalized pentagonal number.
%C For a remarkable connection between the sum-of-divisors function (A000203) and the generalized pentagonal numbers (A001318) see A238442.
%H Antti Karttunen, <a href="/A262613/b262613.txt">Table of n, a(n) for n = 1..5000</a>
%F a(n) = A000203(A001318(n)).
%F Sum_{k=1..n} a(k) ~ (9/40) * n^3. - _Amiram Eldar_, Dec 14 2024
%t DivisorSigma[1, Select[Accumulate[Range[200]]/3, IntegerQ]] (* _G. C. Greubel_, Jun 06 2017 *)
%o (Scheme)
%o (define (A262613 n) (A000203 (A001318 n))) ;; Scheme-program for A000203 given in that entry.
%o ;; This uses memoization-macro definec:
%o (definec (A001318 n) (if (zero? n) 0 (+ (if (even? n) (/ n 2) n) (A001318 (- n 1)))))
%o ;; _Antti Karttunen_, Dec 20 2015
%o (PARI) a(n) = sigma((3*n^2 + 2*n + (n%2) * (2*n + 1)) / 8); \\ _Michel Marcus_, Dec 21 2015
%o (Magma) [DivisorSigma(1,(3*n^2+2*n+(n mod 2)*(2*n+1)) div 8): n in [1..70]]; // _Vincenzo Librandi_, Dec 21 2015
%Y Cf. A000203, A001318, A074285, A117948, A196020, A238442.
%K nonn,easy
%O 1,2
%A _Omar E. Pol_, Nov 24 2015