login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A259673
a(n) = sigma_(prime(n))(n).
2
1, 9, 244, 16513, 48828126, 13062296532, 232630513987208, 144115462954287105, 8862938119746644274757, 100000000186264514923632574038, 191943424957750480504146841291812, 8505622499882988712256991112913772434548, 4695452425098908797088971409337422035076128814
OFFSET
1,2
FORMULA
a(n) = sigma_(A000040(n))(n).
a(n) = [x^n] Sum_{k>=1} k^prime(n)*x^k/(1 - x^k). - Ilya Gutkovskiy, Sep 26 2017
MAPLE
a:= n-> numtheory[sigma][ithprime(n)](n):
seq(a(n), n=1..15); # Alois P. Heinz, Feb 10 2020
MATHEMATICA
a[n_] := DivisorSigma[Prime[n], n]; Array[a, 13]
(* Second program: *)
a[n_] := SeriesCoefficient[Sum[k^Prime[n]*x^k/(1-x^k), {k, 1, n}], {x, 0, n}]; Array[a, 13] (* Jean-François Alcover, Sep 29 2017, from 2nd formula *)
PROG
(PARI) a(n) = sigma(n, prime(n)); \\ Michel Marcus, Jul 03 2015
(Magma) [DivisorSigma(NthPrime(n), n):n in [1..15]]; // Vincenzo Librandi, Jul 15 2015
(Python)
from sympy import divisor_sigma, prime
def A259673(n):
....return divisor_sigma(n, prime(n)) # Chai Wah Wu, Jul 20 2015
CROSSREFS
Cf. A000203 (sigma(n)), A000040 (prime(n)), A023887 (sigma_n(n)).
Cf. A001157 (sigma_2), A001158 (sigma_3), A001160 (sigma_5), A013955 (sigma_7).
Sequence in context: A329305 A183235 A359732 * A272234 A272240 A161159
KEYWORD
nonn,easy
AUTHOR
Ilya Gutkovskiy, Jul 03 2015
EXTENSIONS
a(11) and a(12) from Anders Hellström, Jul 14 2015
STATUS
approved