OFFSET
1,1
COMMENTS
An abc-hit is a triple of coprime positive integers a, b, c such that a + b = c and rad(abc) < c, where rad(n) is the largest squarefree number dividing n.
LINKS
Wikipedia, abc conjecture
EXAMPLE
a(8) = 1331 because rad(8*1323*1331) = 2*21*11 = 462 < 1331, hence (8, 1323, 1331) is an abc-hit and (8, c-8, c) isn't an abc-hit for every c satisfying unequalities c < 1331 and 8 < c-8.
MAPLE
rad:=n -> mul(i, i in factorset(n)):
min_c_for_a:=proc(n) local a, b, c, ra, rc;
for a to n do
ra:=rad(a):
for c from 2*a+1 do
if igcd(a, c)=1 then rc:=rad(c):
if ra*rc<c then b:=c-a:
if ra*rc*rad(b)<c then break fi fi fi od:
print([a, b, c]) od end;
CROSSREFS
KEYWORD
nonn
AUTHOR
Vladimir Letsko, Apr 23 2016
EXTENSIONS
More terms from Jinyuan Wang, Jun 08 2022
STATUS
approved