login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A359732
a(n) = Sum_{d|n} d^(2*d-1).
1
1, 9, 244, 16393, 1953126, 362797308, 96889010408, 35184372105225, 16677181699666813, 10000000000001953134, 7400249944258160101212, 6624737266949237373933820, 7056410014866816666030739694, 8819763977946281130541873428720
OFFSET
1,2
FORMULA
G.f.: Sum_{k>0} k^(2*k-1) * x^k / (1 - x^k).
MATHEMATICA
a[n_] := DivisorSum[n, #^(2*# - 1) &]; Array[a, 15] (* Amiram Eldar, Aug 14 2023 *)
PROG
(PARI) a(n) = sumdiv(n, d, d^(2*d-1));
(PARI) my(N=20, x='x+O('x^N)); Vec(sum(k=1, N, k^(2*k-1)*x^k/(1-x^k)))
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Seiichi Manyama, Jan 12 2023
STATUS
approved