login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A359733
a(n) = (1/2) * Sum_{d|n} (2*d)^(n/d).
1
1, 4, 7, 20, 21, 88, 71, 296, 373, 1084, 1035, 5084, 4109, 16496, 20787, 67728, 65553, 286516, 262163, 1070180, 1189937, 4194568, 4194327, 17760824, 16827241, 67109228, 72150655, 269503660, 268435485, 1104603808, 1073741855, 4303389216, 4476371181
OFFSET
1,2
FORMULA
G.f.: Sum_{k>0} k * x^k / (1 - 2 * k* x^k).
MATHEMATICA
a[n_] := DivisorSum[n, (2*#)^(n/#) &] / 2; Array[a, 33] (* Amiram Eldar, Aug 14 2023 *)
PROG
(PARI) a(n) = sumdiv(n, d, (2*d)^(n/d))/2;
(PARI) my(N=40, x='x+O('x^N)); Vec(sum(k=1, N, k*x^k/(1-2*k*x^k)))
CROSSREFS
Sequence in context: A275389 A127415 A045548 * A090879 A084404 A147065
KEYWORD
nonn,easy
AUTHOR
Seiichi Manyama, Jan 12 2023
STATUS
approved