OFFSET
1,1
COMMENTS
An abc-hit is a triple of coprime positive integers a, b, c such that a + b = c and rad(abc) < c, where rad(n) is the largest squarefree number dividing n.
LINKS
Wikipedia, abc conjecture
EXAMPLE
a(2) = 245 because rad(2*243*245) = 2*3*35 = 210 < 245, hence (2, 243, 245) is an abc-hit and (2, c-2, c) isn't an abc-triple for every c < 245.
MAPLE
rad:=n -> mul(i, i in factorset(n)):
min_c_for_a:=proc(n) local a, b, c, ra, rc;
for a to n do
ra:=rad(a):
for c from a+1 do
if igcd(a, c)=1 then rc:=rad(c):
if ra*rc<c then b:=c-a:
if ra*rc*rad(b)<c then break fi fi fi od:
print([a, b, c]) od end;
CROSSREFS
KEYWORD
nonn
AUTHOR
Vladimir Letsko, Apr 23 2016
EXTENSIONS
More terms from Jinyuan Wang, Jun 08 2022
STATUS
approved