login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A257984
Nonhomogeneous Beatty sequence: ceiling((n - 1/2)*Pi).
3
2, 5, 8, 11, 15, 18, 21, 24, 27, 30, 33, 37, 40, 43, 46, 49, 52, 55, 59, 62, 65, 68, 71, 74, 77, 81, 84, 87, 90, 93, 96, 99, 103, 106, 109, 112, 115, 118, 121, 125, 128, 131, 134, 137, 140, 143, 147, 150, 153, 156, 159, 162, 165, 169, 172, 175, 178, 181, 184
OFFSET
1,1
COMMENTS
Let r = Pi, s = r/(r-1), and t = 1/2. Let R be the ordered set {floor[(n + t)*r] : n is an integer} and let S be the ordered set {floor[(n - t)*s : n is an integer}; thus,
R = (..., -10, -9, -7, -6, -4, -3, -1, 0, 2, 3, 5, 6, 8, ...).
S = (..., -15, -11, -8, -5, -2, 1, 4, 7, 10, 14, 17, 20, ...)
By Fraenkel's theorem (Theorem XI in the cited paper); R and S partition the integers.
R is the set of integers n such that (cos n)*(cos(n + 1)) < 0;
S is the set of integers n such that (cos n)*(cos(n + 1)) > 0.
A246046 = (2,3,6,6,8,...), positive terms of R;
A062389 = (1,4,7,10,14,17,...), positive terms of S;
A258048 = (1,3,4,6,7,9,10,...), - (nonpositive terms of R).
A257984 = (2,5,8,11,15,...), - (negative terms of S);
A062389 and A246046 partition the positive integers, and A258048 and A257984 partition the nonnegative integers.
LINKS
A. S. Fraenkel, The bracket function and complementary sets of integers, Canadian J. of Math. 21 (1969) 6-27.
FORMULA
a(n) = ceiling((n - 1/2)*Pi).
MATHEMATICA
Table[Ceiling[(n - 1/2) Pi], {n, 1, 120}] (* A257984 *)
Table[Ceiling[(n + 1/2) Pi/(Pi - 1)], {n, 0, 120}] (* A258048 *)
CROSSREFS
Cf. A258048 (complement), A246046, A062380, A258833.
Sequence in context: A284882 A190364 A088366 * A376960 A186228 A184747
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Jun 15 2015
STATUS
approved