

A062389


a(n) = floor( (2n1)*Pi/2 ).


10



1, 4, 7, 10, 14, 17, 20, 23, 26, 29, 32, 36, 39, 42, 45, 48, 51, 54, 58, 61, 64, 67, 70, 73, 76, 80, 83, 86, 89, 92, 95, 98, 102, 105, 108, 111, 114, 117, 120, 124, 127, 130, 133, 136, 139, 142, 146, 149, 152, 155, 158, 161, 164, 168, 171, 174, 177, 180, 183, 186
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS

In general, the complement of a nonhomogenous Beatty sequence [n*r + h] is given by [n*s + h  h*s], where s = r/(r  1). As an example, the complement of this sequence is A246046. This sequence gives the positive integers k satisfying tan(k) > tan(k + 1), and A246046 gives those satisfying tan(k) < tan(k + 1).  Clark Kimberling, Aug 24 2014
Excluding a(1), a(n) = positive floored solutions to tan(x) = x.  Derek Orr, May 30 2015


REFERENCES

M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 223.


LINKS

Harry J. Smith, Table of n, a(n) for n=1..1000
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].


MAPLE

seq(floor((2*n1)*Pi/2), n=1..1000); # Robert Israel, Jun 01 2015


MATHEMATICA

r = Pi; s = Pi/(Pi  1); h = Pi/2; z = 120;
u = Table[Floor[n*r + h], {n, 1, z}] (* A062389 *)
v = Table[Floor[n*s + h  h*s], {n, 1, z}] (* A246046 *)
(* Clark Kimberling, Aug 24 2014 *)


PROG

(PARI) j=[]; for(n=1, 150, j=concat(j, floor(1/2*(2*n1)*Pi))); j
(PARI) { default(realprecision, 50); for (n=1, 1000, write("b062389.txt", n, " ", (2*n  1)*Pi\2); ) } \\ Harry J. Smith, Aug 06 2009


CROSSREFS

Cf. A246046.
Sequence in context: A125620 A310687 A310688 * A191402 A080600 A198266
Adjacent sequences: A062386 A062387 A062388 * A062390 A062391 A062392


KEYWORD

nonn,easy


AUTHOR

Jason Earls, Jul 08 2001


STATUS

approved



