login
A284882
Positions of -1 in A284881.
5
2, 5, 8, 11, 15, 18, 20, 23, 26, 29, 33, 36, 38, 41, 45, 48, 50, 53, 56, 59, 62, 65, 69, 72, 74, 77, 80, 83, 87, 90, 92, 95, 99, 102, 104, 107, 110, 113, 116, 119, 123, 126, 128, 131, 135, 138, 140, 143, 146, 149, 152, 155, 159, 162, 164, 167, 170, 173, 177
OFFSET
1,1
COMMENTS
This sequence and A284883 and A284884 form a partition of the positive integers. For n>=1, we have 3n-a(n) in {0,1}, 3*n+1-A284883(n) in {0,1,2,3}, and 3*n-1-A284884(n) in {0,1,2}.
A284881 = (1,-1,1,0,-1,0,1,-1,1,0,-1,0,1,0,...); thus
A284882 = (2,5,8,11,15,18,...)
A284883 = (4,6,10,12,14,16,...)
A284884 = (1,3,7,9,13,17,...).
LINKS
MATHEMATICA
s = Nest[Flatten[# /. {0 -> {0, 1}, 1 -> {0, 1, 1, 0}}] &, {0}, 6] (* A284878 *)
d = Differences[s] (* A284881 *)
Flatten[Position[d, -1]] (* A284882 *)
d2 = Flatten[Position[d, 0]] (* A284883 *)
Flatten[Position[d, 1]] (* A284884 *)
d2/2 (* A284885 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Apr 16 2017
STATUS
approved