login
A257090
a(n) = log_2 (A256691(n)).
3
0, 2, 2, 5, 2, 4, 2, 7, 5, 4, 2, 7, 2, 4, 4, 11, 2, 7, 2, 7, 4, 4, 2, 9, 5, 4, 7, 7, 2, 6, 2, 13, 4, 4, 4, 10, 2, 4, 4, 9, 2, 6, 2, 7, 7, 4, 2, 13, 5, 7, 4, 7, 2, 9, 4, 9, 4, 4, 2, 9, 2, 4, 7, 16, 4, 6, 2, 7, 4, 6, 2, 12, 2, 4, 7, 7, 4, 6, 2, 13, 11, 4, 2, 9, 4, 4, 4, 9, 2, 9, 4, 7, 4, 4, 4, 15, 2, 7, 7, 10
OFFSET
1,2
COMMENTS
a(n) is the logarithm to the base 2 of the denominator of the Dirichlet series of zeta(s)^(1/4). For details, see A256691.
LINKS
FORMULA
2^a(n) = A256691(n).
CROSSREFS
Cf. A046645 (k = 2, log_2), A257089 (k = 3, log_3), A257090 (k = 4, log_2), A257091 (k = 5, log_5).
Sequence in context: A254176 A371012 A340839 * A360910 A339664 A124316
KEYWORD
nonn
AUTHOR
Wolfgang Hintze, Apr 16 2015
STATUS
approved