|
|
A257088
|
|
a(2*n) = 4*n if n>0, a(2*n + 1) = 2*n + 1, a(0) = 1.
|
|
3
|
|
|
1, 1, 4, 3, 8, 5, 12, 7, 16, 9, 20, 11, 24, 13, 28, 15, 32, 17, 36, 19, 40, 21, 44, 23, 48, 25, 52, 27, 56, 29, 60, 31, 64, 33, 68, 35, 72, 37, 76, 39, 80, 41, 84, 43, 88, 45, 92, 47, 96, 49, 100, 51, 104, 53, 108, 55, 112, 57, 116, 59, 120, 61, 124, 63, 128
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,3
|
|
LINKS
|
|
|
FORMULA
|
Euler transform of length 4 sequence [ 1, 3, -1, -1].
a(n) is multiplicative with a(2^e) = 2^(e+1) if e>0, otherwise a(p^e) = p^e.
G.f.: (1 + x + 2*x^2 + x^3 + x^4) / (1 - 2*x^2 + x^4).
G.f.: (1 - x^3) * (1 - x^4) / ((1 - x) * (1 - x^2)^3).
MOBIUS transform of A215947 is [1, 4, 3, 8, 5, ...].
Binomial transform with a(0)=0 is A128543 if n>0.
|
|
EXAMPLE
|
G.f. = 1 + x + 4*x^2 + 3*x^3 + 8*x^4 + 5*x^5 + 12*x^6 + 7*x^7 + 16*x^8 + ...
|
|
MATHEMATICA
|
a[ n_] := Which[ n < 1, Boole[n == 0], OddQ[n], n, True, 2 n];
a[ n_] := SeriesCoefficient[ (1 + x + 2*x^2 + x^3 + x^4) / (1 - 2*x^2 + x^4), {x, 0, n}];
|
|
PROG
|
(PARI) {a(n) = if( n<1, n==0, n%2, n, 2*n)};
(PARI) {a(n) = if( n<0, 0, polcoeff( (1 + x + 2*x^2 + x^3 + x^4) / (1 - 2*x^2 + x^4) + x * O(x^n), n))};
(Haskell)
import Data.List (transpose)
a257088 n = a257088_list !! n
a257088_list = concat $ transpose [a008574_list, a005408_list]
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,mult,easy
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|