login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A257088 a(2*n) = 4*n if n>0, a(2*n + 1) = 2*n + 1, a(0) = 1. 3
1, 1, 4, 3, 8, 5, 12, 7, 16, 9, 20, 11, 24, 13, 28, 15, 32, 17, 36, 19, 40, 21, 44, 23, 48, 25, 52, 27, 56, 29, 60, 31, 64, 33, 68, 35, 72, 37, 76, 39, 80, 41, 84, 43, 88, 45, 92, 47, 96, 49, 100, 51, 104, 53, 108, 55, 112, 57, 116, 59, 120, 61, 124, 63, 128 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,3
LINKS
FORMULA
Euler transform of length 4 sequence [ 1, 3, -1, -1].
a(n) is multiplicative with a(2^e) = 2^(e+1) if e>0, otherwise a(p^e) = p^e.
G.f.: (1 + x + 2*x^2 + x^3 + x^4) / (1 - 2*x^2 + x^4).
G.f.: (1 - x^3) * (1 - x^4) / ((1 - x) * (1 - x^2)^3).
MOBIUS transform of A215947 is [1, 4, 3, 8, 5, ...].
a(n) = n * A040001(n) if n>0.
a(n) + a(n-1) = A007310(n) if n>0.
a(n) = A001082(n+1) - A001082(n) if n>0.
Binomial transform with a(0)=0 is A128543 if n>0.
a(2*n) = A008574(n). a(2*n + 1) = A005408(n).
a(n) = A022998(n) if n>0. - R. J. Mathar, Apr 19 2015
EXAMPLE
G.f. = 1 + x + 4*x^2 + 3*x^3 + 8*x^4 + 5*x^5 + 12*x^6 + 7*x^7 + 16*x^8 + ...
MATHEMATICA
a[ n_] := Which[ n < 1, Boole[n == 0], OddQ[n], n, True, 2 n];
a[ n_] := SeriesCoefficient[ (1 + x + 2*x^2 + x^3 + x^4) / (1 - 2*x^2 + x^4), {x, 0, n}];
PROG
(PARI) {a(n) = if( n<1, n==0, n%2, n, 2*n)};
(PARI) {a(n) = if( n<0, 0, polcoeff( (1 + x + 2*x^2 + x^3 + x^4) / (1 - 2*x^2 + x^4) + x * O(x^n), n))};
(Haskell)
import Data.List (transpose)
a257088 n = a257088_list !! n
a257088_list = concat $ transpose [a008574_list, a005408_list]
-- Reinhard Zumkeller, Apr 17 2015
CROSSREFS
CF. A257083 (partial sums), A246695.
Sequence in context: A021232 A263616 A280166 * A022998 A082895 A086938
KEYWORD
nonn,mult,easy
AUTHOR
Michael Somos, Apr 16 2015
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 13 06:52 EDT 2024. Contains 375860 sequences. (Running on oeis4.)