login
a(n) = log_2 (A256691(n)).
3

%I #11 Apr 16 2015 15:27:24

%S 0,2,2,5,2,4,2,7,5,4,2,7,2,4,4,11,2,7,2,7,4,4,2,9,5,4,7,7,2,6,2,13,4,

%T 4,4,10,2,4,4,9,2,6,2,7,7,4,2,13,5,7,4,7,2,9,4,9,4,4,2,9,2,4,7,16,4,6,

%U 2,7,4,6,2,12,2,4,7,7,4,6,2,13,11,4,2,9,4,4,4,9,2,9,4,7,4,4,4,15,2,7,7,10

%N a(n) = log_2 (A256691(n)).

%C a(n) is the logarithm to the base 2 of the denominator of the Dirichlet series of zeta(s)^(1/4). For details, see A256691.

%H Wolfgang Hintze, <a href="/A257090/b257090.txt">Table of n, a(n) for n = 1..500</a>

%F 2^a(n) = A256691(n).

%Y Cf. A046645 (k = 2, log_2), A257089 (k = 3, log_3), A257090 (k = 4, log_2), A257091 (k = 5, log_5).

%K nonn

%O 1,2

%A _Wolfgang Hintze_, Apr 16 2015