login
A124316
a(n) = Sum_{d|n} sigma(gcd(d,n/d)), where sigma is the sum of divisors function, A000203.
3
1, 2, 2, 5, 2, 4, 2, 8, 6, 4, 2, 10, 2, 4, 4, 15, 2, 12, 2, 10, 4, 4, 2, 16, 8, 4, 10, 10, 2, 8, 2, 22, 4, 4, 4, 30, 2, 4, 4, 16, 2, 8, 2, 10, 12, 4, 2, 30, 10, 16, 4, 10, 2, 20, 4, 16, 4, 4, 2, 20, 2, 4, 12, 37, 4, 8, 2, 10, 4, 8, 2, 48, 2, 4, 16, 10, 4, 8, 2, 30, 23, 4, 2, 20, 4, 4, 4, 16, 2, 24
OFFSET
1,2
COMMENTS
Apparently multiplicative and the inverse Mobius transform of A069290. - R. J. Mathar, Feb 07 2011
LINKS
Ekkehard Krätzel, Werner Georg Nowak, and László Tóth, On certain arithmetic functions involving the greatest common divisor, Cent. Eur. J. Math., 10 (2012), 761-774.
Manfred Kühleitner and Werner Georg Nowak, On a question of A. Schinzel: Omega estimates for a special type of arithmetic functions, Cent. Eur. J. Math., Vol. 11, No. 3 (2013), pp. 477-486; arXiv preprint, arXiv:1204.1146 [math.NT], 2012.
László Tóth, Multiplicative arithmetic functions of several variables: a survey, in: T. Rassias, P. Pardalos (eds.) Mathematics Without Boundaries, Springer, New York, NY, 2024; arXiv preprint, arXiv:1310.7053 [math.NT], 2013-2014.
FORMULA
From Amiram Eldar, Mar 28 2024: (Start)
Multiplicative with a(p^e) = (p^(e/2 + 1)*(p+1) - (e+3)*p + e + 1)/(p-1)^2, if e is even, and (2*p^((e+3)/2) - (e+3)*p + e + 1)/(p-1)^2 if e is odd.
Dirichlet g.f.: zeta(s)^2 * zeta(2*s-1).
Sum_{k=1..n} a(k) = (log(n)^2/4 + (2*gamma - 1/2)*log(n) + 5*gamma^2/2 - 2*gamma - 3*gamma_1 + 1/2) * n + O(n^(2/3)*log(n)^(16/9)), where gamma is Euler's constant (A001620) and gamma_1 is the first Stieltjes constant (A082633) (Krätzel et al., 2012). (End)
MAPLE
A124316 := proc(n) local a, d;
a := 0 ;
for d in numtheory[divisors](n) do
igcd(d, n/d) ;
a := a+numtheory[sigma](%) ;
end do:
a;
end proc: # R. J. Mathar, Apr 14 2011
MATHEMATICA
Table[Plus @@ Map[DivisorSigma[1, GCD[ #, n/# ]] &, Divisors@n], {n, 90}]
f[p_, e_] := (If[OddQ[e], 2*p^((e+3)/2), p^(e/2 + 1)*(p+1)] - (e+3)*p + e + 1)/(p-1)^2; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Mar 28 2024 *)
PROG
(PARI) a(n) = sumdiv(n, d, sigma(gcd(d, n/d))); \\ Michel Marcus, Feb 13 2016
(Python)
from sympy import divisors, divisor_sigma, gcd
def a(n): return sum([divisor_sigma(gcd(d, n/d)) for d in divisors(n)]) # Indranil Ghosh, May 25 2017
KEYWORD
nonn,easy,mult
AUTHOR
Robert G. Wilson v, Sep 30 2006
STATUS
approved