login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A124314
Expansion of -1/(1 + x + x^2 + x^3 + x^4 - x^5).
3
-1, 1, 0, 0, 0, -2, 3, -1, 0, 0, -4, 8, -5, 1, 0, -8, 20, -18, 7, -1, -16, 48, -56, 32, -9, -31, 112, -160, 120, -50, -53, 255, -432, 400, -220, -56, 563, -1119, 1232, -840, 108, 1182, -2801, 3583, -2912, 1056, 2256, -6784, 9967, -9407, 5024
OFFSET
0,6
MATHEMATICA
CoefficientList[Series[1/(-1-x-x^2-x^3-x^4+x^5), {x, 0, 50}], x]
LinearRecurrence[{-1, -1, -1, -1, 1}, {-1, 1, 0, 0, 0}, 60] (* G. C. Greubel, Aug 25 2023 *)
PROG
(PARI) Vec(1/(-1-x-x^2-x^3-x^4+x^5)+O(x^99)) \\ Charles R Greathouse IV, Sep 26 2012
(Magma) R<x>:=PowerSeriesRing(Integers(), 60); Coefficients(R!( (-1+x)/(1-2*x^5+x^6) )); // G. C. Greubel, Aug 25 2023
(SageMath)
def A124314_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P( (-1+x)/(1-2*x^5+x^6) ).list()
A124314_list(60) # G. C. Greubel, Aug 25 2023
CROSSREFS
Sequence in context: A174947 A010341 A072772 * A059087 A353493 A321932
KEYWORD
sign,easy
AUTHOR
Artur Jasinski, Oct 25 2006
STATUS
approved