login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A254658
Numbers of words on alphabet {0,1,...,7} with no subwords ii, where i is from {0,1,2,3}.
5
1, 8, 60, 452, 3404, 25636, 193068, 1454020, 10950412, 82468964, 621084396, 4677466628, 35226603980, 265296094372, 1997979076524, 15047037913156, 113321181698188, 853436423539940, 6427339691572332, 48405123535166084, 364545223512451916, 2745437058727827748
OFFSET
0,2
COMMENTS
a(n) equals the number of octonary sequences of length n such that no two consecutive terms differ by 6. - David Nacin, May 31 2017
FORMULA
G.f.: (1 + x)/(1 - 7*x -4*x^2).
a(n) = 7*a(n-1) + 4*a(n-2) with n>1, a(0) = 1, a(1) = 8.
a(n) = (2^(-1-n)*((7-sqrt(65))^n*(-9+sqrt(65)) + (7+sqrt(65))^n*(9+sqrt(65)))) / sqrt(65). - Colin Barker, Jan 21 2017
MATHEMATICA
RecurrenceTable[{a[0] == 1, a[1] == 8, a[n] == 7 a[n - 1] + 4 a[n - 2]}, a[n], {n, 0, 20}]
LinearRecurrence[{7, 4}, {1, 8}, 30] (* Harvey P. Dale, Jan 21 2023 *)
PROG
(Magma) [n le 1 select 8^n else 7*Self(n)+4*Self(n-1): n in [0..20]];
(PARI) Vec((1 + x) / (1 - 7*x -4*x^2) + O(x^30)) \\ Colin Barker, Jan 21 2017
KEYWORD
nonn,easy
AUTHOR
Milan Janjic, Feb 04 2015
STATUS
approved