login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A254659
Numbers of words on alphabet {0,1,...,8} with no subwords ii, where i is from {0,1,2,3}.
1
1, 9, 77, 661, 5673, 48689, 417877, 3586461, 30781073, 264180889, 2267352477, 19459724261, 167014556473, 1433415073089, 12302393367077, 105586222302061, 906201745251873, 7777545073525289, 66751369314461677, 572898679883319861, 4916946285638867273
OFFSET
0,2
COMMENTS
a(n) is the number of nonary sequences of length n such that no two consecutive terms have distance 7. - David Nacin, May 31 2017
FORMULA
G.f.: (1 + x)/(1 - 8*x - 5*x^2).
a(n) = 8*a(n-1) + 5*a(n-2) with n>1, a(0) = 1, a(1) = 9.
a(n) = ((4-r)^n*(-5+r) + (4+r)^n*(5+r)) / (2*r), where r=sqrt(21). - Colin Barker, Jan 22 2017
MATHEMATICA
RecurrenceTable[{a[0] == 1, a[1] == 9, a[n] == 8 a[n - 1] + 5 a[n - 2]}, a[n], {n, 0, 20}]
PROG
(Magma) [n le 1 select 9^n else 8*Self(n)+5*Self(n-1): n in [0..20]];
(PARI) Vec((1 + x)/(1 - 8*x -5*x^2) + O(x^30)) \\ Colin Barker, Jan 22 2017
KEYWORD
nonn,easy
AUTHOR
Milan Janjic, Feb 04 2015
STATUS
approved