Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #23 Sep 08 2022 08:46:11
%S 1,9,77,661,5673,48689,417877,3586461,30781073,264180889,2267352477,
%T 19459724261,167014556473,1433415073089,12302393367077,
%U 105586222302061,906201745251873,7777545073525289,66751369314461677,572898679883319861,4916946285638867273
%N Numbers of words on alphabet {0,1,...,8} with no subwords ii, where i is from {0,1,2,3}.
%C a(n) is the number of nonary sequences of length n such that no two consecutive terms have distance 7. - _David Nacin_, May 31 2017
%H Colin Barker, <a href="/A254659/b254659.txt">Table of n, a(n) for n = 0..1000</a>
%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (8,5).
%F G.f.: (1 + x)/(1 - 8*x - 5*x^2).
%F a(n) = 8*a(n-1) + 5*a(n-2) with n>1, a(0) = 1, a(1) = 9.
%F a(n) = ((4-r)^n*(-5+r) + (4+r)^n*(5+r)) / (2*r), where r=sqrt(21). - _Colin Barker_, Jan 22 2017
%t RecurrenceTable[{a[0] == 1, a[1] == 9, a[n] == 8 a[n - 1] + 5 a[n - 2]}, a[n], {n, 0, 20}]
%o (Magma) [n le 1 select 9^n else 8*Self(n)+5*Self(n-1): n in [0..20]];
%o (PARI) Vec((1 + x)/(1 - 8*x -5*x^2) + O(x^30)) \\ _Colin Barker_, Jan 22 2017
%Y Cf. A015575, A055099, A126473, A126501, A126528, A254598, A254602.
%K nonn,easy
%O 0,2
%A _Milan Janjic_, Feb 04 2015