login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A254598
Numbers of n-length words on alphabet {0,1,...,8} with no subwords ii, for i from {0,1}.
13
1, 9, 79, 695, 6113, 53769, 472943, 4159927, 36590017, 321839625, 2830847119, 24899654327, 219013164449, 1926402895881, 16944315318191, 149039342816695, 1310924949760897, 11530674997804041, 101421874630758607, 892089722030697143, 7846670898660887393, 69017995243501979145
OFFSET
0,2
COMMENTS
Is this essentially A251366? - Bruno Berselli, Feb 02 2015
Yes, it is: see proof at A251366. - Robert Israel, Mar 19 2018
a(n) is the number of nonary sequences of length n such that no two consecutive terms have distance 8. - David Nacin, May 31 2017
FORMULA
a(n) = 8*a(n-1) + 7*a(n-2) with n>1, a(0) = 1, a(1) = 9.
G.f.: -(x+1) / (7*x^2 + 8*x - 1). - Colin Barker, Feb 02 2015
a(n) = (((4-sqrt(23))^n * (-5+sqrt(23)) + (4+sqrt(23))^n * (5+sqrt(23)))) / (2*sqrt(23)). - Colin Barker, Sep 08 2016
a(n) = A015576(n) + A015576(n+1). - R. J. Mathar, Feb 13 2020
MAPLE
f:= gfun:-rectoproc({a(n) = 8*a(n-1) + 7*a(n-2), a(0)=1, a(1)=9}, a(n), remember):
map(f, [$0..30]); # Robert Israel, Mar 19 2018
MATHEMATICA
RecurrenceTable[{a[0] == 1, a[1] == 9, a[n] == 8 a[n - 1] + 7 a[n - 2]}, a[n], {n, 0, 25}] (* Bruno Berselli, Feb 03 2015 *)
LinearRecurrence[{8, 7}, {1, 9}, 30] (* Harvey P. Dale, Oct 14 2017 *)
PROG
(PARI) Vec(-(x+1)/(7*x^2+8*x-1) + O(x^100)) \\ Colin Barker, Feb 02 2015
CROSSREFS
Sequence in context: A125421 A163445 A190979 * A083411 A181279 A173808
KEYWORD
nonn,easy
AUTHOR
Milan Janjic, Feb 02 2015
STATUS
approved