OFFSET
0,2
COMMENTS
Is this essentially A251366? - Bruno Berselli, Feb 02 2015
Yes, it is: see proof at A251366. - Robert Israel, Mar 19 2018
a(n) is the number of nonary sequences of length n such that no two consecutive terms have distance 8. - David Nacin, May 31 2017
LINKS
Colin Barker, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (8,7).
FORMULA
a(n) = 8*a(n-1) + 7*a(n-2) with n>1, a(0) = 1, a(1) = 9.
G.f.: -(x+1) / (7*x^2 + 8*x - 1). - Colin Barker, Feb 02 2015
a(n) = (((4-sqrt(23))^n * (-5+sqrt(23)) + (4+sqrt(23))^n * (5+sqrt(23)))) / (2*sqrt(23)). - Colin Barker, Sep 08 2016
MAPLE
f:= gfun:-rectoproc({a(n) = 8*a(n-1) + 7*a(n-2), a(0)=1, a(1)=9}, a(n), remember):
map(f, [$0..30]); # Robert Israel, Mar 19 2018
MATHEMATICA
RecurrenceTable[{a[0] == 1, a[1] == 9, a[n] == 8 a[n - 1] + 7 a[n - 2]}, a[n], {n, 0, 25}] (* Bruno Berselli, Feb 03 2015 *)
LinearRecurrence[{8, 7}, {1, 9}, 30] (* Harvey P. Dale, Oct 14 2017 *)
PROG
(PARI) Vec(-(x+1)/(7*x^2+8*x-1) + O(x^100)) \\ Colin Barker, Feb 02 2015
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Milan Janjic, Feb 02 2015
STATUS
approved