Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #47 Feb 13 2020 11:48:34
%S 1,9,79,695,6113,53769,472943,4159927,36590017,321839625,2830847119,
%T 24899654327,219013164449,1926402895881,16944315318191,
%U 149039342816695,1310924949760897,11530674997804041,101421874630758607,892089722030697143,7846670898660887393,69017995243501979145
%N Numbers of n-length words on alphabet {0,1,...,8} with no subwords ii, for i from {0,1}.
%C Is this essentially A251366? - _Bruno Berselli_, Feb 02 2015
%C Yes, it is: see proof at A251366. - _Robert Israel_, Mar 19 2018
%C a(n) is the number of nonary sequences of length n such that no two consecutive terms have distance 8. - _David Nacin_, May 31 2017
%H Colin Barker, <a href="/A254598/b254598.txt">Table of n, a(n) for n = 0..1000</a>
%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (8,7).
%F a(n) = 8*a(n-1) + 7*a(n-2) with n>1, a(0) = 1, a(1) = 9.
%F G.f.: -(x+1) / (7*x^2 + 8*x - 1). - _Colin Barker_, Feb 02 2015
%F a(n) = (((4-sqrt(23))^n * (-5+sqrt(23)) + (4+sqrt(23))^n * (5+sqrt(23)))) / (2*sqrt(23)). - _Colin Barker_, Sep 08 2016
%F a(n) = A015576(n) + A015576(n+1). - _R. J. Mathar_, Feb 13 2020
%p f:= gfun:-rectoproc({a(n) = 8*a(n-1) + 7*a(n-2), a(0)=1, a(1)=9},a(n), remember):
%p map(f, [$0..30]); # _Robert Israel_, Mar 19 2018
%t RecurrenceTable[{a[0] == 1, a[1] == 9, a[n] == 8 a[n - 1] + 7 a[n - 2]}, a[n], {n, 0, 25}] (* _Bruno Berselli_, Feb 03 2015 *)
%t LinearRecurrence[{8,7},{1,9},30] (* _Harvey P. Dale_, Oct 14 2017 *)
%o (PARI) Vec(-(x+1)/(7*x^2+8*x-1) + O(x^100)) \\ _Colin Barker_, Feb 02 2015
%Y Cf. A015576, A251366.
%K nonn,easy
%O 0,2
%A _Milan Janjic_, Feb 02 2015