|
|
A251366
|
|
Number of (n+1) X (1+1) 0..2 arrays with every 2 X 2 subblock summing to 1 2 3 4 5 6 or 7.
|
|
2
|
|
|
79, 695, 6113, 53769, 472943, 4159927, 36590017, 321839625, 2830847119, 24899654327, 219013164449, 1926402895881, 16944315318191, 149039342816695, 1310924949760897, 11530674997804041, 101421874630758607
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
|
|
LINKS
|
|
|
FORMULA
|
Empirical: a(n) = 8*a(n-1) + 7*a(n-2).
Empirical g.f.: x*(79 + 63*x) / (1 - 8*x - 7*x^2). - Colin Barker, Mar 19 2018
Empirical formula verified: see link.
|
|
EXAMPLE
|
Some solutions for n=4:
1 1 0 1 1 2 2 1 1 2 2 1 0 0 2 1 1 0 0 2
2 2 0 2 1 0 0 1 2 0 2 2 0 1 2 2 0 0 0 1
2 1 1 1 0 1 1 2 2 2 1 1 2 0 2 1 1 2 0 2
2 1 2 0 1 2 1 0 1 0 1 2 1 1 2 1 0 2 2 2
0 1 1 0 0 0 1 1 1 1 0 0 1 0 1 1 0 1 0 2
|
|
MAPLE
|
f:= gfun:-rectoproc({a(n) = 8*a(n-1) + 7*a(n-2), a(1)=
79, a(2)=695}, a(n), remember):
|
|
MATHEMATICA
|
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|