|
|
A245391
|
|
a(n) = 2^n*binomial(2*(n+1), n).
|
|
1
|
|
|
1, 8, 60, 448, 3360, 25344, 192192, 1464320, 11202048, 85995520, 662165504, 5112102912, 39557939200, 306726174720, 2382605107200, 18537602088960, 144438816276480, 1126891074355200, 8802271391907840, 68829791335219200, 538749548542033920, 4220762508660572160
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
COMMENTS
|
The g.f. is the derivative of the REVERT transform of x/(1+2*x)^2. - Thomas Baruchel, Jul 02 2018
|
|
LINKS
|
|
|
FORMULA
|
a(n) = 2^(3*n+2)*(n+1/2)!/(sqrt(Pi)*(n+2)*n!).
a(n) = (4*(2*n+1)*(n+1))/(n*(n+2))*a(n-1) for n >= 1.
O.g.f.: 4/(sqrt(1-8*x)*(1+sqrt(1-8*x))^2).
Sum_{n>=0} 1/a(n) = 2/7 + 44*arccot(sqrt(7))/(7*sqrt(7)).
Sum_{n>=0} (-1)^n/a(n) = 2/9 + 26*log(2)/27. (End)
|
|
MAPLE
|
a := n -> 2^(3*n+2)*(n+1/2)!/(sqrt(Pi)*(n+2)*n!):
seq(a(n), n = 0..21);
|
|
MATHEMATICA
|
CoefficientList[Series[4/(Sqrt[1 - 8*x]*(1 + Sqrt[1 - 8*x])^2), {x, 0, 50}], x] (* G. C. Greubel, Apr 06 2017 *)
|
|
PROG
|
(Sage)
@CachedFunction
return (4*(2*n+1)*(n+1))/(n*(n+2))*a(n-1) if n > 0 else 1
(PARI) my(x='x+O('x^50)); Vec(4/(sqrt(1-8*x)*(1+sqrt(1-8*x))^2)) \\ G. C. Greubel, Apr 06 2017
(PARI) my(x='x+O('x^33)); Vec(deriv(serreverse(x/(1+2*x)^2))) \\ Thomas Baruchel, Jul 02 2018
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|