The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A245392 Sum_{k, k|n} 2^(k-1) + Sum_{1<=k<=n, gcd(k,n)=1} 2^(k-1). 0
 2, 4, 8, 16, 32, 56, 128, 224, 480, 856, 2048, 3200, 8192, 13656, 29920, 54752, 131072, 202104, 524288, 857952, 1939168, 3495256, 8388608, 12918016, 33013248, 55924056, 124631008, 222655840, 536870912, 809850488, 2147483648, 3579172320, 7974270688, 14316557656 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS The 1's in the binary expansion of 2^n - a(n) correspond to k such that 1 < gcd(k,n) < k < n. - Robert Israel, Jul 21 2014 LINKS FORMULA a(n) = A034729(n) + A054432(n). If p is prime a(p) = 2^p. MAPLE f:= proc(k, n) local g; g:= igcd(k, n); g = 1 or g = k end proc: A:= n -> 1 + add(2^(k-1), k=select(f, [\$1..n], n)); seq(A(n), n=1..100); # Robert Israel, Jul 21 2014 PROG (PARI) sum(k=1, n, if (gcd(k, n)==1, 2^(k-1), 0)) + sumdiv(n, k, k*2^(k-1)); CROSSREFS Cf. A034729, A054432. Sequence in context: A229614 A230216 A326081 * A115909 A254940 A196724 Adjacent sequences:  A245389 A245390 A245391 * A245393 A245394 A245395 KEYWORD nonn AUTHOR Michel Marcus, Jul 21 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 1 20:49 EDT 2020. Contains 334765 sequences. (Running on oeis4.)