login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A233666 a(n) = 2*binomial(4*n + 8, n)/(n + 2). 4
1, 8, 60, 456, 3542, 28080, 226548, 1855040, 15380937, 128896456, 1090119316, 9292881360, 79769043900, 688915123680, 5981962494852, 52193342019456, 457367224685012, 4023551800087200, 35521420783728880, 314608026125871720, 2794654131668318430 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
COMMENTS
Fuss-Catalan sequence is a(n,p,r) = r*binomial(np+r,n)/(np+r), this is the case p=4, r=8.
LINKS
J-C. Aval, Multivariate Fuss-Catalan Numbers, arXiv:0711.0906v1, Discrete Math., 308 (2008), 4660-4669.
Thomas A. Dowling, Catalan Numbers Chapter 7
Wojciech Mlotkowski, Fuss-Catalan Numbers in Noncommutative Probability, Docum. Mathm. 15: 939-955.
FORMULA
G.f. satisfies: B(x) = {1 + x*B(x)^(p/r)}^r, where p=4, r=8.
From Ilya Gutkovskiy, Sep 14 2018: (Start)
E.g.f.: 4F4(2,9/4,5/2,11/4; 1,3,10/3,11/3; 256*x/27).
a(n) ~ 2^(8*n+35/2)/(sqrt(Pi)*3^(3*n+17/2)*n^(3/2)). (End)
MATHEMATICA
Table[2/(n + 2) Binomial[4 n + 8, n], {n, 0, 40}] (* Vincenzo Librandi, Dec 14 2013 *)
PROG
(PARI) a(n) = 4*binomial(4*n+8, n)/(n+2);
(PARI) {a(n)=local(B=1); for(i=0, n, B=(1+x*B^(1/2))^8+x*O(x^n)); polcoeff(B, n)}
(Magma) [2*Binomial(4*n+8, n)/(n+2): n in [0..30]]; // Vincenzo Librandi, Dec 14 2013
CROSSREFS
Sequence in context: A245391 A254658 A228514 * A199526 A129331 A369146
KEYWORD
nonn,easy
AUTHOR
Tim Fulford, Dec 14 2013
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 12 12:03 EDT 2024. Contains 375851 sequences. (Running on oeis4.)