|
|
A233666
|
|
a(n) = 2*binomial(4*n + 8, n)/(n + 2).
|
|
4
|
|
|
1, 8, 60, 456, 3542, 28080, 226548, 1855040, 15380937, 128896456, 1090119316, 9292881360, 79769043900, 688915123680, 5981962494852, 52193342019456, 457367224685012, 4023551800087200, 35521420783728880, 314608026125871720, 2794654131668318430
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
COMMENTS
|
Fuss-Catalan sequence is a(n,p,r) = r*binomial(np+r,n)/(np+r), this is the case p=4, r=8.
|
|
LINKS
|
|
|
FORMULA
|
G.f. satisfies: B(x) = {1 + x*B(x)^(p/r)}^r, where p=4, r=8.
E.g.f.: 4F4(2,9/4,5/2,11/4; 1,3,10/3,11/3; 256*x/27).
a(n) ~ 2^(8*n+35/2)/(sqrt(Pi)*3^(3*n+17/2)*n^(3/2)). (End)
|
|
MATHEMATICA
|
Table[2/(n + 2) Binomial[4 n + 8, n], {n, 0, 40}] (* Vincenzo Librandi, Dec 14 2013 *)
|
|
PROG
|
(PARI) a(n) = 4*binomial(4*n+8, n)/(n+2);
(PARI) {a(n)=local(B=1); for(i=0, n, B=(1+x*B^(1/2))^8+x*O(x^n)); polcoeff(B, n)}
(Magma) [2*Binomial(4*n+8, n)/(n+2): n in [0..30]]; // Vincenzo Librandi, Dec 14 2013
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|