login
A241831
Number of partitions p = [x(1), ..., x(k)], where x(1) >= x(2) >= ... >= x(k), of n such that max(x(i) - x(i-1)) >= number of parts of p.
5
0, 0, 0, 0, 1, 1, 3, 3, 6, 8, 12, 15, 23, 27, 38, 48, 64, 78, 105, 127, 165, 202, 256, 311, 393, 473, 588, 711, 875, 1050, 1286, 1537, 1867, 2229, 2687, 3195, 3838, 4544, 5427, 6416, 7625, 8981, 10637, 12492, 14736, 17269, 20293, 23715, 27792, 32391, 37840
OFFSET
0,7
FORMULA
a(n) = A241830(n) + A241832(n).
a(n) + A241828(n) = A000041(n) for n >= 0.
EXAMPLE
a(6) counts these 3 partitions: 51, 42, 411.
MATHEMATICA
z = 30; f[n_] := f[n] = IntegerPartitions[n]; g[p_] := Max[-Differences[p]]
Table[Count[f[n], p_ /; g[p] < Length[p]], {n, 0, z}] (* A241828 *)
Table[Count[f[n], p_ /; g[p] <= Length[p]], {n, 0, z}] (* A241829 *)
Table[Count[f[n], p_ /; g[p] == Length[p]], {n, 0, z}] (* A241830 *)
Table[Count[f[n], p_ /; g[p] >= Length[p]], {n, 0, z}] (* A241831 *)
Table[Count[f[n], p_ /; g[p] > Length[p]], {n, 0, z}] (* A241832 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Apr 30 2014
STATUS
approved