login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A241830
Number of partitions p = [x(1), ..., x(k)], where x(1) >= x(2) >= ... >= x(k), of n such that max(x(i) - x(i-1)) = number of parts of p.
5
0, 0, 0, 0, 1, 0, 2, 0, 3, 2, 5, 3, 9, 5, 11, 11, 18, 15, 29, 26, 41, 42, 60, 61, 91, 91, 125, 137, 182, 195, 260, 282, 364, 406, 509, 569, 715, 795, 980, 1111, 1351, 1523, 1847, 2087, 2505, 2847, 3384, 3844, 4563, 5174, 6098, 6941, 8134, 9243, 10807, 12273
OFFSET
0,7
FORMULA
a(n) = A241829(n) - A241828(n) = A241831(n) - A241832(n).
a(n) + A241828(n) + A241832(n) = A000041(n) for n >= 0.
EXAMPLE
a(6) counts these 2 partitions: 42, 411.
MATHEMATICA
z = 30; f[n_] := f[n] = IntegerPartitions[n]; g[p_] := Max[-Differences[p]]
Table[Count[f[n], p_ /; g[p] < Length[p]], {n, 0, z}] (* A241828 *)
Table[Count[f[n], p_ /; g[p] <= Length[p]], {n, 0, z}] (* A241829 *)
Table[Count[f[n], p_ /; g[p] == Length[p]], {n, 0, z}] (* A241830 *)
Table[Count[f[n], p_ /; g[p] >= Length[p]], {n, 0, z}] (* A241831 *)
Table[Count[f[n], p_ /; g[p] > Length[p]], {n, 0, z}] (* A241832 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Apr 30 2014
STATUS
approved