login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A266691
Number of partitions of n with product of multiplicities of parts equal to 8.
2
0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 3, 2, 5, 4, 10, 9, 17, 20, 25, 31, 47, 53, 71, 89, 109, 138, 171, 205, 257, 317, 375, 461, 557, 664, 792, 962, 1124, 1352, 1596, 1878, 2215, 2621, 3042, 3584, 4180, 4862, 5658, 6593, 7598, 8826, 10190, 11730, 13516, 15562, 17811
OFFSET
0,9
LINKS
FORMULA
a(n) ~ c * exp(Pi*sqrt(n/3)) * n^(3/4), where c = 0.0012263686774... - Vaclav Kotesovec, May 24 2018
EXAMPLE
a(8) = 2: [1,1,1,1,1,1,1,1], [1,1,1,1,2,2].
a(10) = 3: [1,1,1,1,1,1,1,1,2], [1,1,2,2,2,2], [1,1,1,1,3,3].
a(12) = 5: [1,1,1,1,2,3,3], [1,1,2,2,3,3], [1,1,1,1,1,1,1,1,4], [1,1,1,1,2,2,4], [1,1,1,1,4,4].
MAPLE
b:= proc(n, i, p) option remember; `if`(i*(p+(i-1)/2)<n, 0, `if`(n=0,
`if`(p=1, 1, 0), b(n, i-1, p) +add(`if`(irem(p, j)>0, 0, (h->
b(h, min(h, i-1), p/j))(n-i*j)), j=1..min(p, n/i))))
end:
a:= b(n$2, 8):
seq(a(n), n=0..65);
MATHEMATICA
b[n_, i_, p_] := b[n, i, p] = If[i*(p + (i - 1)/2) < n, 0, If[n == 0, If[p == 1, 1, 0], b[n, i - 1, p] + Sum[If[Mod[p, j] > 0, 0, Function[h, b[h, Min[h, i - 1], p/j]][n - i*j]], {j, 1, Min[p, n/i]}]]];
a[n_] := b[n, n, 8];
Table[a[n], {n, 0, 65}] (* Jean-François Alcover, May 01 2018, translated from Maple *)
CROSSREFS
Column k=8 of A266477.
Sequence in context: A021496 A241830 A151929 * A083236 A345421 A348959
KEYWORD
nonn
AUTHOR
STATUS
approved