The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A241828 Number of partitions p = [x(1), ..., x(k)], where x(1) >= x(2) >= ... >= x(k), of n such that max(x(i) - x(i-1)) < number of parts of p. 5
 1, 1, 2, 3, 4, 6, 8, 12, 16, 22, 30, 41, 54, 74, 97, 128, 167, 219, 280, 363, 462, 590, 746, 944, 1182, 1485, 1848, 2299, 2843, 3515, 4318, 5305, 6482, 7914, 9623, 11688, 14139, 17093, 20588, 24769, 29713, 35602, 42537, 50769, 60439, 71865, 85265, 101039 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS For the partition [n] of n, "max(x(i) - x(i-1))" is (as in the Mathematica program) interpreted as 0. LINKS Table of n, a(n) for n=0..47. FORMULA a(n) = A241826(n) - A241825(n). a(n) + A241823(n) + A241825(n) = A000041(n) for n >= 0. EXAMPLE a(6) counts these 8 partitions: 6, 33, 321, 3111, 222, 2211, 21111, 111111. MATHEMATICA z = 30; f[n_] := f[n] = IntegerPartitions[n]; g[p_] := Max[-Differences[p]] Table[Count[f[n], p_ /; g[p] < Length[p]], {n, 0, z}] (* A241828 *) Table[Count[f[n], p_ /; g[p] <= Length[p]], {n, 0, z}] (* A241829 *) Table[Count[f[n], p_ /; g[p] == Length[p]], {n, 0, z}] (* A241830 *) Table[Count[f[n], p_ /; g[p] >= Length[p]], {n, 0, z}] (* A241831 *) Table[Count[f[n], p_ /; g[p] > Length[p]], {n, 0, z}] (* A241832 *) CROSSREFS Cf. A241829, A241830, A241831, A241832, A000041. Sequence in context: A180652 A046682 A005987 * A125895 A241344 A064428 Adjacent sequences: A241825 A241826 A241827 * A241829 A241830 A241831 KEYWORD nonn,easy AUTHOR Clark Kimberling, Apr 30 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 23 03:30 EDT 2024. Contains 371906 sequences. (Running on oeis4.)