OFFSET
0,5
COMMENTS
For the partition [n] of n, "min(x(i) - x(i-1))" is (as in the Mathematica program) interpreted as n.
EXAMPLE
a(6) counts these 3 partitions: 6, 51, 42.
MATHEMATICA
z = 30; f[n_] := f[n] = IntegerPartitions[n]; d[p_] := d[p] = Length[DeleteDuplicates[p]]; g1[p_] := Min[-Differences[p]]
Table[Count[f[n], p_ /; g1[p] < d[p]], {n, 0, z}] (* A241823 *)
Table[Count[f[n], p_ /; g1[p] <= d[p]], {n, 0, z}] (* A241824 *)
Table[Count[f[n], p_ /; g1[p] == d[p]], {n, 0, z}] (* A241825 *)
Table[Count[f[n], p_ /; g1[p] >= d[p]], {n, 0, z}] (* A241826 *)
Table[Count[f[n], p_ /; g1[p] > d[p]], {n, 0, z}] (* A241827 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Apr 30 2014
STATUS
approved