login
A241829
Number of partitions p = [x(1), ..., x(k)], where x(1) >= x(2) >= ... >= x(k), of n such that max(x(i) - x(i-1)) <= number of parts of p.
5
1, 1, 2, 3, 5, 6, 10, 12, 19, 24, 35, 44, 63, 79, 108, 139, 185, 234, 309, 389, 503, 632, 806, 1005, 1273, 1576, 1973, 2436, 3025, 3710, 4578, 5587, 6846, 8320, 10132, 12257, 14854, 17888, 21568, 25880, 31064, 37125, 44384, 52856, 62944, 74712, 88649, 104883
OFFSET
0,3
FORMULA
a(n) = A241828(n) + A241830(n).
a(n) + A241832(n) = A000041(n) for n >= 0.
EXAMPLE
a(6) counts these 10 partitions: 6, 42, 411, 33, 321, 3111, 222, 2211, 21111, 111111.
MATHEMATICA
z = 30; f[n_] := f[n] = IntegerPartitions[n]; g[p_] := Max[-Differences[p]]
Table[Count[f[n], p_ /; g[p] < Length[p]], {n, 0, z}] (* A241828 *)
Table[Count[f[n], p_ /; g[p] <= Length[p]], {n, 0, z}] (* A241829 *)
Table[Count[f[n], p_ /; g[p] == Length[p]], {n, 0, z}] (* A241830 *)
Table[Count[f[n], p_ /; g[p] >= Length[p]], {n, 0, z}] (* A241831 *)
Table[Count[f[n], p_ /; g[p] > Length[p]], {n, 0, z}] (* A241832 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Apr 30 2014
STATUS
approved