login
A241390
Number of partitions p of n such that the number of distinct parts is not a part and max(p) - min(p) is not a part.
5
1, 0, 1, 1, 3, 3, 6, 8, 12, 15, 22, 31, 37, 56, 67, 92, 116, 156, 190, 255, 310, 406, 498, 638, 787, 988, 1212, 1517, 1856, 2290, 2802, 3441, 4158, 5099, 6166, 7460, 9015, 10879, 13049, 15716, 18752, 22469, 26798, 31961, 37890, 45148, 53376, 63253, 74626
OFFSET
0,5
FORMULA
a(n) + A241391(n) = A000041(n) for n >= 0.
EXAMPLE
a(6) counts these 6 partitions: 6, 51, 411, 33, 3111, 222.
MATHEMATICA
z = 40; f[n_] := f[n] = IntegerPartitions[n]; d[p_] := d[p] = Length[DeleteDuplicates[p]];
Table[Count[f[n], p_ /; MemberQ[p, d[p]] && MemberQ[p, Max[p] - Min[p]]], {n, 0, z}] (* A241387 *)
Table[Count[f[n], p_ /; ! MemberQ[p, d[p]] && MemberQ[p, Max[p] - Min[p]]], {n, 0, z}] (* A241388 *)
Table[Count[f[n], p_ /; MemberQ[p, d[p]] && ! MemberQ[p, Max[p] - Min[p]]], {n, 0, z}] (* A241389 *)
Table[Count[f[n], p_ /; ! MemberQ[p, d[p]] && ! MemberQ[p, Max[p] - Min[p]]], {n, 0, z}] (* A241390 *)
Table[Count[f[n], p_ /; MemberQ[p, d[p]] || MemberQ[p, Max[p] - Min[p]]], {n, 0, z}] (* A241391 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Apr 21 2014
STATUS
approved