OFFSET
0,5
EXAMPLE
a(6) counts these 6 partitions: 6, 51, 411, 33, 3111, 222.
MATHEMATICA
z = 40; f[n_] := f[n] = IntegerPartitions[n]; d[p_] := d[p] = Length[DeleteDuplicates[p]];
Table[Count[f[n], p_ /; MemberQ[p, d[p]] && MemberQ[p, Max[p] - Min[p]]], {n, 0, z}] (* A241387 *)
Table[Count[f[n], p_ /; ! MemberQ[p, d[p]] && MemberQ[p, Max[p] - Min[p]]], {n, 0, z}] (* A241388 *)
Table[Count[f[n], p_ /; MemberQ[p, d[p]] && ! MemberQ[p, Max[p] - Min[p]]], {n, 0, z}] (* A241389 *)
Table[Count[f[n], p_ /; ! MemberQ[p, d[p]] && ! MemberQ[p, Max[p] - Min[p]]], {n, 0, z}] (* A241390 *)
Table[Count[f[n], p_ /; MemberQ[p, d[p]] || MemberQ[p, Max[p] - Min[p]]], {n, 0, z}] (* A241391 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Apr 21 2014
STATUS
approved