login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A309455
Number of squarefree parts in the partitions of n into 3 parts.
1
0, 0, 0, 3, 3, 6, 8, 11, 13, 18, 19, 24, 27, 33, 36, 44, 47, 54, 59, 66, 70, 81, 84, 95, 100, 111, 116, 128, 134, 146, 153, 165, 172, 186, 192, 207, 215, 230, 238, 256, 264, 281, 291, 309, 319, 340, 349, 369, 380, 400, 411, 432, 442, 464, 475, 497, 508, 532
OFFSET
0,4
FORMULA
a(n) = Sum_{j=1..floor(n/3)} Sum_{i=j..floor((n-j)/2)} (mu(i)^2 + mu(j)^2 + mu(n-i-j)^2), where mu is the Möbius function (A008683).
EXAMPLE
Figure 1: The partitions of n into 3 parts for n = 3, 4, ...
1+1+8
1+1+7 1+2+7
1+2+6 1+3+6
1+1+6 1+3+5 1+4+5
1+1+5 1+2+5 1+4+4 2+2+6
1+1+4 1+2+4 1+3+4 2+2+5 2+3+5
1+1+3 1+2+3 1+3+3 2+2+4 2+3+4 2+4+4
1+1+1 1+1+2 1+2+2 2+2+2 2+2+3 2+3+3 3+3+3 3+3+4 ...
-----------------------------------------------------------------------
n | 3 4 5 6 7 8 9 10 ...
-----------------------------------------------------------------------
a(n) | 3 3 6 8 11 13 18 19 ...
-----------------------------------------------------------------------
MATHEMATICA
Table[Sum[Sum[MoebiusMu[i]^2 + MoebiusMu[j]^2 + MoebiusMu[n - i - j]^2, {i, j, Floor[(n - j)/2]}], {j, Floor[n/3]}], {n, 0, 50}]
CROSSREFS
Cf. A008683.
Sequence in context: A021752 A049626 A241343 * A168637 A372887 A241390
KEYWORD
nonn
AUTHOR
Wesley Ivan Hurt, Aug 03 2019
STATUS
approved