login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A309456
Number of squarefree parts in the partitions of n into 4 parts.
1
0, 0, 0, 0, 4, 4, 8, 11, 19, 22, 32, 38, 51, 59, 75, 86, 108, 123, 147, 167, 197, 218, 254, 281, 322, 354, 400, 437, 491, 534, 592, 643, 710, 765, 840, 903, 984, 1055, 1145, 1222, 1324, 1410, 1517, 1614, 1734, 1837, 1968, 2083, 2222, 2348, 2499, 2633, 2797
OFFSET
0,5
FORMULA
a(n) = Sum_{k=1..floor(n/4)} Sum_{j=k..floor((n-k)/3)} Sum_{i=j..floor((n-j-k)/2)} (mu(i)^2 + mu(j)^2 + mu(k)^2 + mu(n-i-j-k)^2), where mu is the Möbius function (A008683).
EXAMPLE
Figure 1: The partitions of n into 4 parts for n = 8, 9, ..
1+1+1+9
1+1+2+8
1+1+3+7
1+1+4+6
1+1+1+8 1+1+5+5
1+1+2+7 1+2+2+7
1+1+1+7 1+1+3+6 1+2+3+6
1+1+2+6 1+1+4+5 1+2+4+5
1+1+3+5 1+2+2+6 1+3+3+5
1+1+1+6 1+1+4+4 1+2+3+5 1+3+4+4
1+1+1+5 1+1+2+5 1+2+2+5 1+2+4+4 2+2+2+6
1+1+2+4 1+1+3+4 1+2+3+4 1+3+3+4 2+2+3+5
1+1+3+3 1+2+2+4 1+3+3+3 2+2+2+5 2+2+4+4
1+2+2+3 1+2+3+3 2+2+2+4 2+2+3+4 2+3+3+4
2+2+2+2 2+2+2+3 2+2+3+3 2+3+3+3 3+3+3+3
--------------------------------------------------------------------------
n | 8 9 10 11 12 ...
--------------------------------------------------------------------------
a(n) | 19 22 32 38 51 ...
--------------------------------------------------------------------------
- Wesley Ivan Hurt, Sep 07 2019
MATHEMATICA
Table[Sum[Sum[Sum[(MoebiusMu[i]^2 + MoebiusMu[j]^2 + MoebiusMu[k]^2 + MoebiusMu[n - i - j - k]^2), {i, j, Floor[(n - j - k)/2]}], {j, k, Floor[(n - k)/3]}], {k, Floor[n/4]}], {n, 0, 50}]
Table[Count[Flatten[IntegerPartitions[n, {4}]], _?SquareFreeQ], {n, 0, 60}] (* Harvey P. Dale, Apr 17 2021 *)
CROSSREFS
Cf. A008683.
Sequence in context: A152967 A376433 A301705 * A004024 A292276 A278083
KEYWORD
nonn
AUTHOR
Wesley Ivan Hurt, Aug 03 2019
STATUS
approved