login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A241834 Number of terms in the greedy residue sum for n^2. 4
1, 2, 3, 2, 3, 3, 4, 3, 3, 4, 4, 2, 3, 3, 4, 4, 4, 3, 3, 4, 4, 3, 4, 2, 3, 3, 4, 4, 4, 4, 5, 3, 3, 4, 4, 3, 4, 4, 5, 2, 3, 3, 4, 4, 4, 4, 5, 3, 4, 3, 3, 4, 4, 3, 4, 4, 5, 4, 4, 2, 3, 3, 4, 4, 4, 4, 5, 3, 4, 4, 5, 3, 3, 4, 4, 3, 4, 4, 5, 4, 4, 5, 5, 2, 3, 3 (list; graph; refs; listen; history; text; internal format)
OFFSET

2,2

COMMENTS

Greedy residue sums are introduced at A241833.

LINKS

Clark Kimberling, Table of n, a(n) for n = 2..2000

EXAMPLE

n ... n^2 ... a(n)

1 ..  1 .... (undefined)

2 ... 4 .... 1 = # terms in 1

3 ... 9 .... 2 = # the terms in 4 + 1

4 ... 16 ... 3 = # terms in 9 + 4 + 1

5 ... 25 ... 2 = # terms in 16 + 9

6 ... 36 ... 3 = # terms in 25 + 9 + 1

7 ... 49 ... 3 = # terms in 36 + 9 + 4

8 ... 64 ... 4 = # terms in 49 + 9 + 4 + 1

MATHEMATICA

z = 200;  s = Table[n^2, {n, 1, z}]; t = Table[{s[[n]], #, Total[#] == s[[n]]} &[   DeleteCases[-Differences[FoldList[If[#1 - #2 >= 0, #1 - #2, #1] &, s[[n]], Reverse[Select[s, # < s[[n]] &]]]], 0]], {n, z}]; r[n_] := s[[n]] - Total[t[[n]][[2]]]; tr =  Table[r[n], {n, 2, z}]  (* A241833 *)

c = Table[Length[t[[n]][[2]]], {n, 2, z}] (* A241834 *)

f = 1 + Flatten[Position[tr, 0]]  (* A241835 *)

f^2  (* A241836 *)

(* Peter J. C. Moses, May 06 2014 *)

CROSSREFS

Cf. A241832, A241835, A241836, A000290.

Sequence in context: A106370 A128630 A273040 * A086389 A128622 A026256

Adjacent sequences:  A241831 A241832 A241833 * A241835 A241836 A241837

KEYWORD

nonn,easy

AUTHOR

Clark Kimberling, May 09 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified June 28 09:49 EDT 2017. Contains 288813 sequences.