login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A235606
Shanks's array d_{a,n} (a >= 1, n >= 1) that generalizes the tangent numbers, read by antidiagonals upwards.
8
1, 1, 2, 2, 11, 16, 4, 46, 361, 272, 4, 128, 3362, 24611, 7936, 6, 272, 16384, 515086, 2873041, 353792, 8, 522, 55744, 4456448, 135274562, 512343611, 22368256, 8, 904, 152166, 23750912, 2080374784, 54276473326, 129570724921, 1903757312, 12, 1408, 355688
OFFSET
1,3
REFERENCES
D. Shanks. "Generalized Euler and Class Numbers." Math. Comput. 21, 689-694, 1967. Math. Comput. 22, 699, 1968.
LINKS
D. Shanks, Generalized Euler and class numbers, Math. Comp. 21 (1967), 689-694; 22 (1968), 699. [Annotated scanned copy]
FORMULA
Shanks gives recurrences.
EXAMPLE
The array begins:
A000182: 1, 2, 16, 272, 7936, 353792, ...
A000464: 1, 11, 361, 24611, 2873041, 512343611, ...
A000191: 2, 46, 3362, 515086, 135274562, 54276473326, ...
A000318: 4,128, 16384, 4456448, 2080374784, 1483911200768, ...
A000320: 4,272, 55744, 23750912, 17328937984, 19313964388352, ...
A000411: 6,522,152166, 93241002, 97949265606,157201459863882, ...
A064072: 8,904,355688,296327464,423645846728,925434038426824, ...
...
MATHEMATICA
amax = nmax = 10; km0 = 10; Clear[dd]; L[a_, s_, km_] := Sum[JacobiSymbol[ -a, 2k+1]/(2k+1)^s, {k, 0, km}]; d[1, n_, km_] := 2(2n-1)! L[-1, 2n, km] (2/Pi)^(2n) // Round; d[a_ /; a>1, n_, km_] := (2n-1)! L[-a, 2n, km] (2a/ Pi)^(2n)/Sqrt[a] // Round; dd[km_] := dd[km] = Table[d[a, n, km], {a, 1, amax}, {n, 1, nmax}]; dd[km0]; dd[km = 2km0]; While[dd[km] != dd[km/2, km = 2km]]; A235606 = dd[km]; Table[A235606[[ a-n+1, n]], {a, 1, amax}, {n, 1, a}] // Flatten (* Jean-François Alcover, Feb 05 2016 *)
dds[b_, nm_] := With[{ns = Range[nm]}, (-1)^(ns - 1) If[Mod[b, 4] == 1, Sum[JacobiSymbol[k, b] (b - 4 k)^(2 ns - 1), {k, 1, (b - 1)/2}], Sum[JacobiSymbol[b, 2 k + 1] (b - (2 k + 1))^(2 ns - 1), {k, 0, (b - 2)/2}]]];
dsfs[1, nm_] := dsfs[1, nm] = (2 Range[nm] - 1)! CoefficientList[Series[Tan[x], {x, 0, 2 nm - 1}]/x, x^2];
dsfs[b_, nm_] := dsfs[b, nm] = Fold[Function[{ds, dd}, Append[ds, dd - Sum[ds[[-i]] (-b^2)^i Binomial[2 Length[ds] + 1, 2 i], {i, Length[ds]}]]], {}, dds[b, nm]];
rowA235606[a_, nm_] := With[{facs = FactorInteger[a], ns = Range[nm]}, With[{b = Times @@ (#^Mod[#2, 2] &) @@@ facs}, If[a == b, dsfs[b, nm], If[b == 1, 1/2, 1] dsfs[b, nm] Sqrt[a/b]^(4 ns - 1) Times @@ Cases[facs, {p_, e_} /; p > 2 && e > 1 :> 1 - JacobiSymbol[b, p]/p^(2 ns)]]]];
arr = Table[rowA235606[a, 10], {a, 10}];
Flatten[Table[arr[[r - n + 1, n]], {r, Length[arr]}, {n, r}]] (* Matthew House, Oct 30 2024 *)
CROSSREFS
Rows: A000182 (tangent numbers), A000464, A000191, A000318, A000320, A000411, A064072-A064075, ...
Columns: A000061, A000176, A000488, A000518, ...
Cf. A235605.
Sequence in context: A121871 A194638 A327870 * A175202 A187430 A151365
KEYWORD
nonn,tabl
AUTHOR
N. J. A. Sloane, Jan 22 2014
EXTENSIONS
More terms from Lars Blomberg, Sep 07 2015
STATUS
approved