login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A233280
Permutation of nonnegative integers: a(n) = A003188(A054429(n)).
10
0, 1, 2, 3, 4, 5, 7, 6, 8, 9, 11, 10, 14, 15, 13, 12, 16, 17, 19, 18, 22, 23, 21, 20, 28, 29, 31, 30, 26, 27, 25, 24, 32, 33, 35, 34, 38, 39, 37, 36, 44, 45, 47, 46, 42, 43, 41, 40, 56, 57, 59, 58, 62, 63, 61, 60, 52, 53, 55, 54, 50, 51, 49, 48, 64, 65, 67, 66
OFFSET
0,3
COMMENTS
This permutation transforms the enumeration system of positive irreducible fractions A071766/A229742 (HCS) into the enumeration system A007305/A047679 (Stern-Brocot), and the enumeration system A245325/A245326 into A162909/A162910 (Bird). - Yosu Yurramendi, Jun 09 2015
FORMULA
a(n) = A003188(A054429(n)).
a(n) = A063946(A003188(n)).
a(n) = A054429(A154436(n)).
a(0)=0, a(1)=1, and otherwise, a(2n) = A000069(1+a(n)), a(2n+1) = A001969(1+a(n)). [A recurrence based on entangling even & odd numbers with odious and evil numbers]
a(n) = A258746(A180201(n)) = A180201(A117120(n)), n > 0. - Yosu Yurramendi, Apr 10 2017
PROG
(Scheme)
(define (A233280 n) (A003188 (A054429 n)))
;; Alternative version, based on entangling even & odd numbers with odious and evil numbers:
(definec (A233280 n) (cond ((< n 2) n) ((even? n) (A000069 (+ 1 (A233280 (/ n 2))))) (else (A001969 (+ 1 (A233280 (/ (- n 1) 2)))))))
(R)
maxrow <- 8 # by choice
a <- 1
for(m in 0:maxrow) for(k in 0:(2^m-1)){
a[2^(m+1)+ k] <- a[2^m+ k] + 2^m
a[2^(m+1)+2^m+k] <- a[2^(m+1)-1-k] + 2^(m+1)
}
a
# Yosu Yurramendi, Apr 05 2017
(Python)
from sympy import floor
def a003188(n): return n^(n>>1)
def a054429(n): return 1 if n==1 else 2*a054429(floor(n/2)) + 1 - n%2
def a(n): return 0 if n==0 else a003188(a054429(n)) # Indranil Ghosh, Jun 11 2017
CROSSREFS
Inverse permutation: A233279.
Similarly constructed permutation pairs: A003188/A006068, A135141/A227413, A232751/A232752, A233275/A233276, A233277/A233278, A193231 (self-inverse).
Sequence in context: A102451 A370791 A370790 * A233279 A359752 A267111
KEYWORD
nonn
AUTHOR
Antti Karttunen, Dec 18 2013
STATUS
approved